A weak Galerkin finite element approximation of two-dimensional sub-diffusion equation with time-fractional derivative

被引:4
|
作者
Zhu, Ailing [1 ]
Wang, Yixin [1 ]
Xu, Qiang [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 05期
关键词
sub-diffusion equation; Caputo fractional derivative; weak Galerkin finite element method; discrete weak gradient; error estimate; DIFFERENCE SCHEME; ANOMALOUS DIFFUSION; ACCURACY; SUBDIFFUSION;
D O I
10.3934/math.2020274
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a fully discrete weak Galerkin finite element method for the initial-boundary value problem of two-dimensional sub-diffusion equation with Caputo time-fractional derivative. A traditional L-1 discretization for the Caputo time-fractional derivative and a weak Galerkin scheme for the space integer differential operator are employed. We prove the stability of the numerical method and establish the error estimate in L-2 and discrete H-1 norms, respectively. Some numerical results are reported to confirm the theory.
引用
收藏
页码:4297 / 4310
页数:14
相关论文
共 50 条
  • [1] A Weak Galerkin Finite Element Method for High Dimensional Time-fractional Diffusion Equation
    Wang, Xiuping
    Gao, Fuzheng
    Liu, Yang
    Sun, Zhengjia
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 386
  • [2] Finite Difference/Collocation Method for Two-Dimensional Sub-Diffusion Equation with Generalized Time Fractional Derivative
    Xu, Qinwu
    Zheng, Zhoushun
    [J]. JOURNAL OF MATHEMATICAL STUDY, 2014, 47 (02): : 173 - 189
  • [3] Explicit Saul'yev Finite Difference Approximation for Two-Dimensional Fractional Sub-diffusion Equation
    Ali, Umair
    Abdullah, Farah Aini
    [J]. PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [4] Numerical Solution of the Time-Fractional Sub-Diffusion Equation on an Unbounded Domain in Two-Dimensional Space
    Li, Hongwei
    Wu, Xiaonan
    Zhang, Jiwei
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (03) : 439 - 454
  • [5] A Dimensional-Splitting Weak Galerkin Finite Element Method for 2D Time-Fractional Diffusion Equation
    Seal, Aniruddha
    Natesan, Srinivasan
    Toprakseven, Suayip
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (03)
  • [6] A Dimensional-Splitting Weak Galerkin Finite Element Method for 2D Time-Fractional Diffusion Equation
    Aniruddha Seal
    Srinivasan Natesan
    Suayip Toprakseven
    [J]. Journal of Scientific Computing, 2024, 98
  • [7] ANISOTROPIC EQROT 1 FINITE ELEMENT APPROXIMATION FOR A MULTI-TERM TIME-FRACTIONAL MIXED SUB-DIFFUSION AND DIFFUSION-WAVE EQUATION
    Fan, Huijun
    Zhao, Yanmin
    Wang, Fenling
    Shi, Yanhua
    Liu, Fawang
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (03) : 439 - 440
  • [8] A numerical treatment of the two-dimensional multi-term time-fractional mixed sub-diffusion and diffusion-wave equation
    Ezz-Eldien, S. S.
    Doha, E. H.
    Wang, Y.
    Cai, W.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 91
  • [9] A NOVEL SPECTRAL APPROXIMATION FOR THE TWO-DIMENSIONAL FRACTIONAL SUB-DIFFUSION PROBLEMS
    Bhrawy, A. H.
    Zaky, M. A.
    Baleanu, D.
    Abdelkawy, M. A.
    [J]. ROMANIAN JOURNAL OF PHYSICS, 2015, 60 (3-4): : 344 - 359
  • [10] A fast accurate approximation method with multigrid solver for two-dimensional fractional sub-diffusion equation
    Lin, Xue-lei
    Lu, Xin
    Ng, Micheal K.
    Sun, Hai-Wei
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 323 : 204 - 218