Dimension in the realm of transseries

被引:2
|
作者
Aschenbrenner, Matthias [1 ]
van den Dries, Lou [2 ]
van der Hoeven, Joris [3 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Ecole Polytech, F-91128 Palaiseau, France
来源
ORDERED ALGEBRAIC STRUCTURES AND RELATED TOPICS | 2017年 / 697卷
关键词
DIFFERENTIAL-EQUATIONS; SETS;
D O I
10.1090/conm/697/14044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be the differential field of transseries. We establish some basic properties of the dimension of a definable subset of T-n, also in relation to its codimension in the ambient space T-n. The case of dimension 0 is of special interest, and can be characterized both in topological terms (discreteness) and in terms of the Herwig-Hrushovski-Macpherson notion of co-analyzability.
引用
收藏
页码:23 / 39
页数:17
相关论文
共 50 条
  • [1] The Fifth dimension: An exploration of the spiritual realm
    Rodd, CS
    EXPOSITORY TIMES, 2000, 111 (06): : 181 - 182
  • [2] The fifth dimension: An exploration of the spiritual realm.
    Masuchika, G
    LIBRARY JOURNAL, 1999, 124 (14) : 198 - 198
  • [3] MUSICAL COMPOSITION IN THE REALM OF EDUCATION AND THE DIMENSION OF THE ARTS (ITALIAN)
    PADRONI, U
    NUOVA RIVISTA MUSICALE ITALIANA, 1983, 17 (01): : 130 - 131
  • [4] TRANSSERIES FOR BEGINNERS
    Edgar, G. A.
    REAL ANALYSIS EXCHANGE, 2009, 35 (02) : 253 - 310
  • [5] Transseries for causal diffusive systems
    Michal P. Heller
    Alexandre Serantes
    Michał Spaliński
    Viktor Svensson
    Benjamin Withers
    Journal of High Energy Physics, 2021
  • [6] TRANSSERIES AS GERMS OF SURREAL FUNCTIONS
    Berarducci, Alessandro
    Mantova, Vincenzo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (05) : 3549 - 3592
  • [7] Transseries for causal diffusive systems
    Heller, Michal P.
    Serantes, Alexandre
    Spalinski, Michal
    Svensson, Viktor
    Withers, Benjamin
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (04)
  • [8] ON THE VALUE GROUP OF THE TRANSSERIES
    Berarducci, Alessandro
    Freni, Pietro
    PACIFIC JOURNAL OF MATHEMATICS, 2021, 312 (02) : 335 - +
  • [9] Toward a Model Theory for Transseries
    Aschenbrenner, Matthias
    van den Dries, Lou
    van der Hoeven, Joris
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2013, 54 (3-4) : 279 - 310
  • [10] Surreal numbers, derivations and transseries
    Berarducci, Alessandro
    Mantova, Vincenzo
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (02) : 339 - 390