Limit Theorems in Hidden Markov Models

被引:9
|
作者
Han, Guangyue [1 ]
机构
[1] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
Entropy; hidden Markov models; limit theorem; Shannon-McMillan-Breiman theorem; MAXIMUM-LIKELIHOOD ESTIMATOR; ENTROPY;
D O I
10.1109/TIT.2012.2226701
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, under mild assumptions, we derive a law of large numbers, a central limit theorem with an error estimate, an almost sure invariance principle, and a variant of the Chernoff bound in finite-state hidden Markov models. These limit theorems are of interest in certain areas of information theory and statistics. Particularly, we apply the limit theorems to derive the rate of convergence of the maximum likelihood estimator in finite-state hidden Markov models.
引用
收藏
页码:1311 / 1328
页数:18
相关论文
共 50 条
  • [1] Limit Theorems for the Sample Entropy of Hidden Markov Chains
    Han, Guangyue
    [J]. 2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 3009 - 3013
  • [2] Many Strong Limit Theorems for Hidden Markov Models on a Non-homogeneous Tree
    Jin, Shaohua
    Lv, Jie
    Fan, Zhenyao
    Sun, Shuguang
    Zhang, Yanmin
    [J]. ADVANCED TECHNOLOGY IN TEACHING - PROCEEDINGS OF THE 2009 3RD INTERNATIONAL CONFERENCE ON TEACHING AND COMPUTATIONAL SCIENCE (WTCS 2009), VOL 1: INTELLIGENT UBIQUITIOUS COMPUTING AND EDUCATION, 2012, 116 : 331 - +
  • [3] Some Strong Limit Theorems for Hidden Markov Models Indexed by a Non-homogeneous Tree
    Jin, Shaohua
    Wang, Yongxue
    Liu, Huitao
    Tian, Ying
    Li, Hui
    [J]. 2010 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS (IITSI 2010), 2010, : 169 - 172
  • [4] LIMIT THEOREMS FOR MARKOV PROCESSES
    FOGUEL, SR
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 121 (01) : 200 - &
  • [5] MARKOV RENEWAL LIMIT THEOREMS
    Degtyar, S. V.
    [J]. THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2007, 76 : 31 - 37
  • [6] Some Generalized Entropy Ergodic Theorems for Nonhomogeneous Hidden Markov Models
    Yao, Qifeng
    Cheng, Longsheng
    Chen, Wenhe
    Mao, Ting
    [J]. MATHEMATICS, 2024, 12 (04)
  • [7] Markov models - hidden Markov models
    Grewal, Jasleen K.
    Krzywinski, Martin
    Altman, Naomi
    [J]. NATURE METHODS, 2019, 16 (09) : 795 - 796
  • [8] Markov models — hidden Markov models
    Jasleen K. Grewal
    Martin Krzywinski
    Naomi Altman
    [J]. Nature Methods, 2019, 16 : 795 - 796
  • [9] CENTRAL LIMIT THEOREMS AND DIFFUSION APPROXIMATIONS FOR MULTISCALE MARKOV CHAIN MODELS
    Kang, Hye-Won
    Kurtz, Thomas G.
    Popovic, Lea
    [J]. ANNALS OF APPLIED PROBABILITY, 2014, 24 (02): : 721 - 759
  • [10] SOME LIMIT THEOREMS FOR MARKOV PROCESSES
    HOROWITZ, S
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1968, 6 (02) : 107 - &