Characterization of Li-Zn-Fe crystalline phases in low temperature ceramic glaze

被引:8
|
作者
Wannagon, Anucha [1 ]
Prasanphan, Sitthisak [1 ]
Sanguanpak, Samunya [1 ]
机构
[1] Natl Met & Mat Technol Ctr, Klongluang 12120, Pathumthani, Thailand
关键词
Crystalline glaze; Low firing temperature; Lithium zinc ferrite; Anorthite; Hematite; RAMAN-SPECTROSCOPY; GLASS-CERAMICS; BEHAVIOR; ANORTHITE; ZNFE2O4; MGO;
D O I
10.1016/j.jeurceramsoc.2012.10.027
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ceramic glaze containing Li2O and ZnO was prepared at a low firing temperature of 1100 degrees C. Addition of 0-30 wt.% iron oxide content developed brown color with a metallic sparkling effect from crystallization after soaking at 980-1080 degrees C. Using XRD, SEM/EDS and Raman microscopy the crystalline phases were determined as lithium zinc ferrite (LixZn1-xFe2+xO4 where x = 0.05-0.20), hematite (alpha-Fe2O3) and anorthite (CaAl2Si2O8). The most preferable metallic sparkling effect was caused by the lithium zinc ferrite phase obtained from the glaze containing 10 wt.% of iron oxide. Thermal analysis by STA after heat treatment indicated that crystallization temperature of lithium zinc ferrite and the effective soaking temperature depended on the iron oxide content in the glaze. The influence of excessive iron oxide content on the crystallization behavior of lithium zinc ferrite, anorthite and hematite phases is discussed. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:653 / 660
页数:8
相关论文
共 50 条
  • [1] Influence of ferric oxide on the crystallization of Li-Zn ferrite anorthite and hematite phases at low temperature ceramic glaze
    Silakate, Supakorn
    Wannagon, Anucha
    Nuntiya, Apinon
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (07) : 2183 - 2188
  • [2] CHARACTERIZATION OF CRYSTALLINE AND QUASI-CRYSTALLINE PHASES IN THE AL-LI-CU-ZN-MG SYSTEM
    DUBOST, B
    AUDIER, M
    LANG, JM
    SAINFORT, P
    [J]. MEMOIRES ET ETUDES SCIENTIFIQUES DE LA REVUE DE METALLURGIE, 1987, 84 (09): : 478 - 478
  • [3] Achieve the mechanical strength of ceramic membrane using low temperature ceramic glaze
    Lee, Jong-Chan
    Kim, Jin-Ho
    Han, Kyu-Sung
    Hwang, Kwang-Taek
    [J]. JOURNAL OF THE KOREAN CRYSTAL GROWTH AND CRYSTAL TECHNOLOGY, 2018, 28 (01): : 38 - 43
  • [4] Characterization of Low Firing Temperature Ceramic Glaze Using Phuket MSW and Soda Lime Cullet
    Ketboonruang, P.
    Jinawat, S.
    Kashima, D. P.
    Wasanapiarnpong, T.
    Sujaridworakun, P.
    Buggakuptav, W.
    Traipol, N.
    Jiemsirilers, S.
    [J]. 3RD INTERNATIONAL CONGRESS ON CERAMICS (ICC3): INNOVATION IN REFRACTORIES AND TRADITIONAL CERAMICS, 2011, 18
  • [5] Characterization of low firing temperature ceramic glaze using phuket MSW and Soda Lime Cullet
    Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
    不详
    [J]. IOP Conf. Ser. Mater. Sci. Eng., SYMPOSIUM 16
  • [6] CRYSTALLINE-STRUCTURE OF LI(FE, ZN)[PO4]
    KABALOV, YK
    SIMONOV, MA
    IVANOV, VI
    MELNIKOV, OK
    BELOV, NV
    [J]. DOKLADY AKADEMII NAUK SSSR, 1973, 208 (06): : 1346 - 1348
  • [7] Study and characterization of low temperature tungsten oxynitride phases stabilized by doping with Fe, Co, and Ni
    Truszkowski, J
    Chen, F
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 213 : 606 - INOR
  • [8] High dielectric constant perovskite ceramic sintered at low temperature with La–Li–Zn–B glass for LTCC applications
    Xiuhua Gao
    Zhe Xiong
    Xing Zhang
    Bin Tang
    [J]. Journal of Materials Science: Materials in Electronics, 2023, 34
  • [9] Formation of high-temperature crystalline phases in ceramic from illite clay and dolomite
    Sedmale, Gaida
    Sperberga, Ingunda
    Sedmalis, Uldis
    Valancius, Zenonas
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2006, 26 (15) : 3351 - 3355
  • [10] Low-Temperature Physical Vapor Deposition and Electrical Characterization of Single-Crystalline Zn Nanowires
    Kolhep, Maximilian
    Zacharias, Margit
    [J]. CRYSTAL GROWTH & DESIGN, 2021, 21 (10) : 5760 - 5764