Power-law exponent of the Bouchaud-Mezard model on regular random networks

被引:3
|
作者
Ichinomiya, Takashi [1 ]
机构
[1] Gifu Univ, Sch Med, Dept Biomed Informat, Gifu 5011194, Japan
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 01期
关键词
WEALTH;
D O I
10.1103/PhysRevE.88.012819
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the Bouchaud-Mezard model on a regular random network. By assuming adiabaticity and independency, and utilizing the generalized central limit theorem and the Tauberian theorem, we derive an equation that determines the exponent of the probability distribution function of the wealth as x -> infinity. The analysis shows that the exponent can be smaller than 2, while a mean-field analysis always gives the exponent as being larger than 2. The results of our analysis are shown to be in good agreement with those of the numerical simulations.
引用
收藏
页数:4
相关论文
共 50 条