Polyethylene as a Cosolvent and Catalyst Support in Ring-Opening Metathesis Polymerization

被引:18
|
作者
Suriboot, Jakkrit [1 ]
Hobbs, Christopher E. [2 ]
Guzman, William [1 ]
Bazzi, Hassan S. [3 ]
Bergbreiter, David E. [1 ]
机构
[1] Texas A&M Univ, Dept Chem, College Stn, TX 77840 USA
[2] Texas A&M Univ, Dept Chem, Kingsville, TX 78363 USA
[3] Texas A&M Univ Qatar, Dept Chem, Doha, Qatar
基金
美国国家科学基金会;
关键词
FREE-RADICAL POLYMERIZATION; OLEFIN METATHESIS; RUTHENIUM CATALYSTS; PRECISION POLYMERS; REACTION-PRODUCTS; GRUBBS CATALYST; REMOVAL; COMPLEXES; CARBENES; LIGANDS;
D O I
10.1021/acs.macromol.5b01141
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polyethylene oligomers (PEOlig) can be used as cosolvents and sometimes soluble catalyst supports in ring-opening metathesis polymerization (ROMP) reactions. As a catalyst support, this polyolefin serves as an N-heterocydic carbene ligand for a ROMP catalyst, making it soluble at 70 degrees C and insoluble at room temperature. As a cosolvent, unfunctionalized PE oligomers facilitate quantitative separation of PEOlig-bound Ru-catalyst residues from polymer products. In these cases, the insolubility of the unfunctionalized polyethylene (Polywax) and its entrapment of the PEOlig-supported Ru residue in the product phase at room temperature afford ROMP products with Ru contamination lower than other procedures that use soluble catalysts. These separations require only physical processes to separate the product and catalyst residues-no additional solvents are necessary. Control experiments suggest that most (ca. 90%) of the Ru leaching that is seen results from Ru byproducts formed in the vinyl ether quenching step and not from the polymerization processes involving the PEOlig-supported Ru complex.
引用
收藏
页码:5511 / 5516
页数:6
相关论文
共 50 条
  • [1] In situ catalyst systems for ring-opening metathesis polymerization
    Kelsey, DR
    Handlin, DL
    Narayana, M
    Scardino, BM
    [J]. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 1997, 35 (14) : 3027 - 3047
  • [2] Continuous flow ring-opening polymerization and ring-opening metathesis polymerization
    Liu, Yihuan
    Ou, Shi
    Wu, Jiaqi
    Zhao, Rongji
    Hou, Ruixiang
    Li, Xiaomin
    Sun, Yongxiang
    Li, Yuguang
    Hu, Xin
    Zhu, Ning
    Guo, Kai
    [J]. EUROPEAN POLYMER JOURNAL, 2024, 216
  • [3] Copolymers of polyethylene and perylenediimides through ring-opening metathesis polymerization
    Nielsen, Christian B.
    Veldman, Dirk
    Martin-Rapun, Rafael
    Janssen, Rene A. J.
    [J]. MACROMOLECULES, 2008, 41 (04) : 1094 - 1103
  • [4] A Catalyst for the Simultaneous Ring-Opening Metathesis Polymerization/Vinyl Insertion Polymerization
    Buchmeiser, Michael R.
    Camadanli, Sebnem
    Wang, Dongren
    Zou, Yuanlin
    Decker, Ulrich
    Kuehnel, Christa
    Reinhardt, Ingrid
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (15) : 3566 - 3571
  • [5] Designing Sequence Selectivity into a Ring-Opening Metathesis Polymerization Catalyst
    Chen, Peter
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (05) : 1052 - 1060
  • [6] RING-OPENING METATHESIS POLYMERIZATION OF DELTACYCLENE VIA A RUTHENIUM CATALYST
    LAUTENS, M
    ABDELAZIZ, AS
    REIBEL, J
    [J]. MACROMOLECULES, 1989, 22 (10) : 4132 - 4134
  • [7] RING-OPENING METATHESIS POLYMERIZATION CATALYSTS
    GRUBBS, RH
    JOHNSON, LK
    NOVAK, BM
    HILLMYER, M
    BENEDICTO, A
    FRANCE, M
    NGUYEN, ST
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 205 : 456 - POLY
  • [8] Trends in ring-opening metathesis polymerization
    Stelzer, F
    [J]. JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, 1996, A33 (07): : 941 - 952
  • [9] Living ring-opening metathesis polymerization
    Bielawski, Christopher W.
    Grubbs, Robert H.
    [J]. PROGRESS IN POLYMER SCIENCE, 2007, 32 (01) : 1 - 29
  • [10] Ring-opening metathesis polymerization in emulsion
    Claverie, JP
    Viala, S
    Maurel, V
    Novat, C
    [J]. MACROMOLECULES, 2001, 34 (03) : 382 - 388