Impact of transition metal incorporation on the photocatalytic CO2 reduction activity of polymeric carbon nitride

被引:7
|
作者
Li, Jiahui [1 ]
Li, Keyan [1 ]
Du, Jun [1 ]
Yang, Hong [2 ]
Song, Chunshan [1 ,3 ]
Guo, Xinwen [1 ]
机构
[1] Dalian Univ Technol, Sch Chem Engn, PSU DUT Joint Ctr Energy Res, State Key Lab Fine Chem, Dalian 116024, Peoples R China
[2] Univ Western Australia, Dept Mech Engn, Perth, WA 6009, Australia
[3] Chinese Univ Hong Kong, Fac Sci, Dept Chem, Shatin, Hong Kong, Peoples R China
关键词
Carbon nitride; Transition metal; Doping; Heterojunction; Photocatalytic CO2 reduction; Z-SCHEME HYBRID; G-C3N4; PERFORMANCE; HETEROJUNCTION; PHOTOREDUCTION; CONVERSION; NANOSHEETS; EVOLUTION; CATALYSTS; SYNERGY;
D O I
10.1016/j.jcou.2022.102162
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Incorporation of transition metals in polymeric carbon nitride (CN) is an effective strategy to enhance its pho-tocatalytic CO2 reduction activity, however, the difference of activity enhancement by incorporating different metals is not well understood. Herein, CN is modified with different transition metals by pyrolyzing the mixtures of urea and metal-organic frameworks (MOFs) to obtain MCN (M = Cu, Co, Ti or Fe). For each given type of metal-modified CN, the photocatalytic CO(2 )reduction activity is optimized by controlling the content of MOF precursor during pyrolysis. The optimized MCN delivers significantly enhanced CO evolution rate than pure CN, in the order of CN (83 mu mol g(-1) h(-1)) < CuCN (246 mu mol g(-1) h(-1)) < CoCN (326 mu mol g(-1) h(-1)) < TiCN (454 mu mol g(-1) h(-1)) < FeCN (490 mu mol g(-1) h(-1)). It is revealed that for CuCN and CoCN, Cu and Co are doped in CN. In contrast, for TiCN and FeCN, Ti and Fe exist as TiO2 and Fe2O3 forming Z-scheme heterojunctions with CN. The progressively improved photocatalytic activity corresponds to the increased specific surface area, CO(2 )adsorption capacity, visible light absorption as well as charge separation and transfer efficiency. Furthermore, we design and prepare bimetal incorporated CN through combining metal doping with heterojunction construction strategies, i. e., Cu doped CN/TiO2 and Co doped CN/Fe2O3, which exhibit further enhanced CO2 photoreduction perfor-mance with CO evolution rates of 613 and 718 mu mol g(-1) h(-1,) respectively. This work provides insight into the design and preparation of highly efficient CN-based photocatalytic materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Photocatalytic CO2 Reduction by Mesoporous Polymeric Carbon Nitride Photocatalysts
    Tasbihi, Minoo
    Acharjya, Amitava
    Thomas, Arne
    Reli, Martin
    Ambrozova, Nela
    Koci, Kamila
    Schomaecker, Reinhard
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (08) : 5636 - 5644
  • [2] Bridging engineering of polymeric carbon nitride for boosting photocatalytic CO2 reduction
    Ye, Qianjin
    Yang, Ran
    Huang, Longhui
    Li, Qin
    Zhang, Qiong
    Li, Di
    Tian, Dan
    Jiang, Deli
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 652 : 813 - 824
  • [3] Potassium/oxygen co-doped polymeric carbon nitride for enhanced photocatalytic CO2 reduction
    Hou, Yanting
    Guan, Honghao
    Yu, Jiaguo
    Cao, Shaowen
    APPLIED SURFACE SCIENCE, 2021, 563
  • [4] Probing the effect of P-doping in polymeric carbon nitride on CO2 photocatalytic reduction
    Guo, Yangkun
    Wang, Min
    Tian, Jianjian
    Shen, Meng
    Zhang, Lingxia
    Shi, Jianlin
    DALTON TRANSACTIONS, 2020, 49 (44) : 15750 - 15757
  • [5] Synthesis and optimization of the trimesic acid modified polymeric carbon nitride for enhanced photocatalytic reduction of CO2
    Hayat, Asif
    Khan, Javid
    Rahman, Mati Ur
    Mane, Sunilkumar Baburao
    Khan, Wasim Ullah
    Sohai, Muhammad
    Rahman, Naveed Ur
    Shaishta, Naghma
    Chi, Zhenguo
    Wu, Mingmei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 548 : 197 - 205
  • [6] Synthesis of Carbon Nitride Nanosheets with n→π* Electronic Transition for Boosting Photocatalytic CO2 Reduction
    Song, Bing
    Zhang, Min
    Hou, Shiying
    Liang, Huirong
    Li, Qiuye
    Yang, Jianjun
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (03)
  • [7] Advances in Polymeric Carbon Nitride Photocatalysts for Enhanced CO2 Reduction
    Bing, Liu
    Shangcong, Sun
    Ye, Song
    Bo, Peng
    Wei, Lin
    CHINA PETROLEUM PROCESSING & PETROCHEMICAL TECHNOLOGY, 2024, 26 (02) : 1 - 12
  • [8] Band engineering of non-metal modified polymeric carbon nitride with broad spectral response for enhancing photocatalytic CO2 reduction
    Yang, Jinman
    Yang, Kefen
    Zhu, Xingwang
    Wang, Zhaolong
    Yang, Zhengrui
    Ding, Xingdong
    Zhong, Kang
    He, Minqiang
    Li, Huaming
    Xu, Hui
    CHEMICAL ENGINEERING JOURNAL, 2023, 461
  • [9] Materials design of edge-modified polymeric carbon nitride nanoribbons for the photocatalytic CO2 reduction reaction
    Liu, Shaohua
    Li, Yi
    Zhang, Yongfan
    Lin, Wei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (14) : 9901 - 9908
  • [10] Nanocages of Polymeric Carbon Nitride from Low-Temperature Supramolecular Preorganization for Photocatalytic CO2 Reduction
    Wang, Jiu
    Cao, Shaowen
    Yu, Jiaguo
    SOLAR RRL, 2020, 4 (08):