Global existence and finite time blow up for a class of semilinear wave equations on RN

被引:18
|
作者
Liu, Gongwei [1 ]
Xia, Suxia [1 ]
机构
[1] Henan Univ Technol, Coll Sci, Zhengzhou 450001, Peoples R China
关键词
Damped wave equations; Initial value problem; Global existence; Blow up; Exponential decay; POSITIVE INITIAL ENERGY; CAUCHY-PROBLEM; SOURCE TERMS; EVOLUTION-EQUATIONS; NONEXISTENCE; DISSIPATION; DECAY;
D O I
10.1016/j.camwa.2015.07.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the initial value problem for a class of semilinear wave equations with damping and source terms. Under certain conditions we establish the global existence of solutions, and the asymptotic behavior of the solutions by introducing an appropriate Lyapunov functions. Moreover, we examine the blow-up in finite time when the initial data is sufficiently large. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1345 / 1356
页数:12
相关论文
共 50 条