COMBINATORIAL IMAGES OF SETS OF REALS AND SEMIFILTER TRICHOTOMY

被引:11
|
作者
Tsaban, Boaz [1 ,2 ]
Zdomskyy, Lyubomyr [2 ,3 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
[2] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
[3] Ivan Franko Lviv Natl Univ, Dept Mech & Math, UA-79000 Lvov, Ukraine
关键词
Scheepers property; semifilter trichotomy;
D O I
10.2178/jsl/1230396918
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a dictionary translating a variety of classical and modem covering properties into combinatorial properties of continuous images, we get a simple way to understand the interrelations between these properties in ZFC and in the realm of the trichotomy axiom for upward closed families of sets of natural numbers. while it is now known that the answer to the Hurewicz 1927 problem is positive. it is shown here that semifilter trichotomy implies a negative answer to a slightly stronger form of this problem.
引用
收藏
页码:1278 / 1288
页数:11
相关论文
共 50 条
  • [1] Continuous images of sets of reals
    Bartoszynski, T
    Shelah, S
    TOPOLOGY AND ITS APPLICATIONS, 2001, 116 (02) : 243 - 253
  • [2] A hodgepodge of sets of reals
    Miller, Arnold W.
    NOTE DI MATEMATICA, 2007, 27 : 25 - 39
  • [3] COVERING SETS OF REALS
    GARDNER, RJ
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (07): : 554 - 554
  • [4] A note on small sets of reals
    Bartoszynski, Tomek
    Shelah, Saharon
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (11-12) : 1053 - 1061
  • [5] CANTOR SETS AND FIELDS OF REALS
    Kuba, Gerald
    MATEMATICKI VESNIK, 2022, 74 (04): : 249 - 259
  • [6] Strongly dominating sets of reals
    Michal Dečo
    Miroslav Repický
    Archive for Mathematical Logic, 2013, 52 : 827 - 846
  • [7] Limitwise monotonic sets of reals
    Faizrahmanov, Marat
    Kalimullin, Iskander
    MATHEMATICAL LOGIC QUARTERLY, 2015, 61 (03) : 224 - 229
  • [8] INDUCTIVELY DEFINED SETS OF REALS
    CENZER, D
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (03) : 485 - 487
  • [9] ON THE RAMSEY PROPERTY FOR SETS OF REALS
    KASTANAS, IG
    JOURNAL OF SYMBOLIC LOGIC, 1983, 48 (04) : 1035 - 1045
  • [10] PERFECT SETS OF RANDOM REALS
    BRENDLE, J
    JUDAH, H
    ISRAEL JOURNAL OF MATHEMATICS, 1993, 83 (1-2) : 153 - 176