Poisson brackets in Kontsevich's "Lie World"

被引:1
|
作者
Naef, Florian [1 ]
机构
[1] MIT, Dept Math, 182 Mem Dr, Cambridge, MA 02142 USA
关键词
Kontsevich's non-commutative differential calculus; Double Poisson structures; Moduli spaces of flat connections;
D O I
10.1016/j.geomphys.2020.103741
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we develop the theory of double brackets in the sense of van den Bergh (2008) in Kontsevich's non-commutative "Lie World". These double brackets can be thought of as Poisson structures defined by formal expressions only involving the structure maps of a quadratic Lie algebra. The basic example is the Kirillov-Kostant-Souriau (KKS) Poisson bracket. We introduce a notion of non-degenerate double brackets. Surprisingly, in this framework the KKS bracket turns out to be non-degenerate. The main result of the paper is the uniqueness theorem for double brackets with a given moment map. As applications, we establish a monoidal equivalence between Hamiltonian quasi-Poisson spaces and Hamiltonian spaces and give a new proof of the theorem by L. Jeffrey in Jeffrey (1994) on symplectic structure on the moduli space of flat g-connections on a surface of genus 0. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Compatible Poisson Brackets on Lie Algebras
    A. V. Bolsinov
    A. V. Borisov
    Mathematical Notes, 2002, 72 : 10 - 30
  • [2] Compatible Poisson brackets on Lie algebras
    Bolsinov, AV
    Borisov, AV
    MATHEMATICAL NOTES, 2002, 72 (1-2) : 10 - 30
  • [3] Bundles of Lie algebras and compatible Poisson brackets
    Yanovski, AB
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (6-7): : 946 - 950
  • [4] Finite generation of Lie algebras of Poisson brackets
    Alahmadi, A.
    Alsulami, H.
    Jain, S. K.
    Zelmanov, E.
    JOURNAL OF ALGEBRA, 2023, 623 : 273 - 287
  • [5] LIE BRACKETS WHICH REDUCE TO POISSON BRACKET
    WOLLENBE.LS
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 1 (2P2): : 331 - &
  • [6] APPLICATIONS OF GENERALIZED BRACKETS TO LIE AND POISSON ALGEBRAS
    BRACONNIER, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (20): : 877 - 880
  • [7] The sh Lie Structure of Poisson Brackets in Field Theory
    G. Barnich
    R. Fulp
    T. Lada
    J. Stasheff
    Communications in Mathematical Physics, 1998, 191 : 585 - 601
  • [8] The sh Lie structure of Poisson brackets in field theory
    Barnich, G
    Fulp, R
    Lada, T
    Stasheff, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 191 (03) : 585 - 601
  • [9] Classification and Casimir invariants of Lie-Poisson brackets
    Thiffeault, JL
    Morrison, PJ
    PHYSICA D-NONLINEAR PHENOMENA, 2000, 136 (3-4) : 205 - 244
  • [10] HYDRODYNAMICAL POISSON BRACKETS AND LOCAL LIE-ALGEBRAS
    KUPERSHMIDT, BA
    PHYSICS LETTERS A, 1987, 121 (04) : 167 - 174