Multidimensional versions of Poincare's theorem for difference equations

被引:9
|
作者
Leinartas, E. K. [1 ]
Passare, M. [2 ]
Tsikh, A. K. [1 ]
机构
[1] Siberian State Univ, Krasnoyarsk, Russia
[2] Stockholm Univ, Stockholm, Sweden
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1070/SM2008v199n10ABEH003970
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A generalization to several variables of the classical Poincare theorem on the asymptotic behaviour of solutions of a linear difference equation is presented. Two versions are considered: 1) general solutions of a system of n equations with respect to a function of n variables and 2) special solutions of a scalar equation. The classical Poincare theorem presumes that all the zeros of the. limiting symbol have different. absolute values. Using the notion of an amoeba of an algebraic hypersurface, a multidimensional analogue of this property is formulated; it ensures nice asymptotic behaviour of special solutions of the corresponding difference equation.
引用
收藏
页码:1505 / 1521
页数:17
相关论文
共 50 条