A statistical procedure to map high-order epistasis for complex traits

被引:11
|
作者
Pang, Xiaoming [1 ]
Wang, Zhong [1 ,2 ]
Yap, John S. [3 ]
Wang, Jianxin [1 ]
Zhu, Junjia [4 ,5 ]
Bo, Wenhao [1 ]
Lv, Yafei [1 ]
Xu, Fang [1 ]
Zhou, Tao [1 ]
Peng, Shaofeng [1 ]
Shen, Dengfeng [1 ]
Wu, Rongling [1 ]
机构
[1] Beijing Forestry Univ, Ctr Computat Biol, Coll Biol Sci & Biotechnol, Beijing 100083, Peoples R China
[2] Dalian Univ Technol, Dalian, Peoples R China
[3] Univ Florida, Gainesville, FL 32611 USA
[4] Penn State Harrisburg, Dept Math & Comp Sci, Harrisburg, PA USA
[5] Penn State Coll Med, Dept Publ Hlth Sci, Hershey, PA USA
关键词
Epistasis; high-order interactions; quantitative trait loci; EM algorithm; GENOME-WIDE ASSOCIATION; ZEA-MAYS; LOCI; MODEL; DISSECTION; METABOLISM; EXPRESSION; DESIGN; GENES;
D O I
10.1093/bib/bbs027
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Genetic interactions or epistasis have been thought to play a pivotal role in shaping the formation, development and evolution of life. Previous work focused on lower-order interactions between a pair of genes, but it is obviously inadequate to explain a complex network of genetic interactions and pathways. We review and assess a statistical model for characterizing high-order epistasis among more than two genes or quantitative trait loci (QTLs) that control a complex trait. The model includes a series of start-of-the-art standard procedures for estimating and testing the nature and magnitude of QTL interactions. Results from simulation studies and real data analysis warrant the statistical properties of the model and its usefulness in practice. High-order epistatic mapping will provide a routine procedure for charting a detailed picture of the genetic regulation mechanisms underlying the phenotypic variation of complex traits.
引用
收藏
页码:302 / 314
页数:13
相关论文
共 50 条
  • [1] A multi-objective optimization procedure for solving the high-order epistasis detection problem
    Granado-Criado, Jose M.
    Santander-Jimenez, Sergio
    Vega-Rodriguez, Miguel A.
    Rubio-Largo, Alvaro
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2020, 142
  • [2] High-order epistasis shapes evolutionary trajectories
    Sailer, Zachary R.
    Harms, Michael J.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (05)
  • [3] A Characterization of the Parameter Space for High-order Epistasis
    Yang, W.
    Gu, C. C.
    [J]. GENETIC EPIDEMIOLOGY, 2008, 32 (07) : 722 - 722
  • [4] A Whole-Genome Simulator Capable of Modeling High-Order Epistasis for Complex Disease
    Yang, Wei
    Gu, C. Charles
    [J]. GENETIC EPIDEMIOLOGY, 2013, 37 (07) : 686 - 694
  • [5] On the Relationship Between High-Order Linkage Disequilibrium and Epistasis
    Zan, Yanjun
    Forsberg, Simon K. G.
    Carlborg, Orjan
    [J]. G3-GENES GENOMES GENETICS, 2018, 8 (08): : 2817 - 2824
  • [6] Evaluation of Existing Methods for High-Order Epistasis Detection
    Ponte-Fernandez, Christian
    Gonzalez-Dominguez, Jorge
    Carvajal-Rodriguez, Antonio
    Jose Martin, Maria
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (02) : 912 - 926
  • [7] Exploiting the pathway structure of metabolism to reveal high-order epistasis
    Imielinski, Marcin
    Belta, Calin
    [J]. BMC SYSTEMS BIOLOGY, 2008, 2
  • [8] ON TRIBBIAS HIGH-ORDER INITIALIZATION PROCEDURE
    BALLISH, BA
    [J]. MONTHLY WEATHER REVIEW, 1986, 114 (01) : 238 - 239
  • [9] A Whole-genome Simulator Capable of Modeling High-order Epistasis for GWAS Studies of Complex Disease
    Yang, Wei
    Gu, Chi C.
    [J]. GENETIC EPIDEMIOLOGY, 2009, 33 (08) : 795 - 795
  • [10] Disentangling high-order mechanisms and high-order behaviours in complex systems
    Rosas, Fernando E.
    Mediano, Pedro A. M.
    Luppi, Andrea I.
    Varley, Thomas F.
    Lizier, Joseph T.
    Stramaglia, Sebastiano
    Jensen, Henrik J.
    Marinazzo, Daniele
    [J]. NATURE PHYSICS, 2022, 18 (05) : 476 - 477