On the rate of convergence of orthorecursive expansions over non-orthogonal wavelets

被引:1
|
作者
Kudryavtsev, A. Yu. [1 ]
机构
[1] Moscow State Inst Int Relat, Moscow, Russia
关键词
orthorecursive expansion; wavelets; Parseval's identity; greedy algorithm; rate of convergence; computational stability; Faber-Schauder system;
D O I
10.1070/IM2012v076n04ABEH002602
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider orthorecursive expansions (a generalization of orthogonal series) over families of non-orthogonal wavelets formed by the dyadic dilations and integer shifts of a given function phi. We estimate the rate of convergence of such expansions under some fairly relaxed restrictions on phi and give examples of these estimates in some concrete cases.
引用
收藏
页码:688 / 701
页数:14
相关论文
共 50 条
  • [1] On the Convergence of Orthorecursive Expansions in Nonorthogonal Wavelets
    Kudryavtsev, A. Yu.
    [J]. MATHEMATICAL NOTES, 2012, 92 (5-6) : 643 - 656
  • [2] On the convergence of orthorecursive expansions in nonorthogonal wavelets
    A. Yu. Kudryavtsev
    [J]. Mathematical Notes, 2012, 92 : 643 - 656
  • [3] Pointwise convergence of a class of non-orthogonal wavelet expansions
    Zayed, AI
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (12) : 3629 - 3637
  • [4] Subset selection for multi-Gabor and non-orthogonal wavelets expansions
    Rebollo-Neira, L
    Fernandez-Rubio, J
    Janer, L
    [J]. PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1998, : 533 - 536
  • [5] RATE OF CONVERGENCE OF MULTIDIMENSIONAL ORTHOGONAL EXPANSIONS
    BAIN, M
    DELVES, LM
    MEAD, KO
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1978, 22 (02): : 225 - 234
  • [6] A convergence criterion for orthorecursive expansions in Euclidean spaces
    Politov, A. V.
    [J]. MATHEMATICAL NOTES, 2013, 93 (3-4) : 636 - 640
  • [7] A condition for almost everywhere convergence of orthorecursive expansions
    Galatenko, V. V.
    Lukashenko, T. P.
    Sadovnichii, V. A.
    [J]. MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2016, 71 (05) : 191 - 195
  • [8] A convergence criterion for orthorecursive expansions in Euclidean spaces
    A. V. Politov
    [J]. Mathematical Notes, 2013, 93 : 636 - 640
  • [9] Non-orthogonal spline wavelets for boundary element analysis
    Koro, K
    Abe, K
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2001, 25 (03) : 149 - 164
  • [10] Folded over non-orthogonal designs
    Lin, C. Devon
    Miller, A.
    Sitter, R. R.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (10) : 3107 - 3124