Description of interest regions with local binary patterns

被引:833
|
作者
Heikkila, Marko [1 ,2 ]
Pietikainen, Matti [1 ,2 ]
Schmid, Cordelia [3 ]
机构
[1] Infotech Oulu, Machine Vis Grp, FI-90014 Oulu, Finland
[2] Univ Oulu, Elect & Informat Engn Dept, FI-90014 Oulu, Finland
[3] INRIA Grenoble, F-38330 Montbonnot St Martin, France
基金
芬兰科学院;
关键词
Region description; Region detection; Local binary patterns; SIFT; Image matching; Object recognition; TEXTURE CLASSIFICATION; RECOGNITION; SCALE;
D O I
10.1016/j.patcog.2008.08.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel method for interest region description. We adopted the idea that the appearance of an interest region can be well characterized by the distribution of its local features. The most well-known descriptor built on this idea is the SIFT descriptor that uses gradient as the local feature. Thus far, existing texture features are not widely utilized in the context of region description. In this paper, we introduce a new texture feature called center-symmetric local binary pattern (CS-LBP) that is a modified version of the well-known local binary pattern (LBP) feature. To combine the strengths of the SIFT and LBP, we use the CS-LBP as the local feature in the SIFT algorithm. The resulting descriptor is called the CS-LBP descriptor. In the matching and object category classification experiments, our descriptor performs favorably compared to the SIFT. Furthermore, the CS-LBP descriptor is computationally simpler than the SIFT. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:425 / 436
页数:12
相关论文
共 50 条
  • [1] Description of Interest Regions Based on Combined Local Binary Patterns
    Yang, Yi
    Duan, Fajie
    Niu, Guangyue
    Zheng, Hao
    [J]. 2017 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN), 2017, : 1343 - 1347
  • [2] Description of interest regions with center-symmetric local binary patterns
    Heikkila, Marko
    Pietikainen, Matti
    Schmid, Cordelia
    [J]. COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 2006, 4338 : 58 - +
  • [3] Interest Region Description Using Local Binary Pattern of Gradients
    Saleem, Sajid
    Sablatnig, Robert
    [J]. IMAGE ANALYSIS, SCIA 2013: 18TH SCANDINAVIAN CONFERENCE, 2013, 7944 : 468 - 477
  • [4] Description of interest regions with oriented local self-similarity
    Liu, Jingneng
    Zeng, Guihua
    [J]. OPTICS COMMUNICATIONS, 2012, 285 (10-11) : 2549 - 2557
  • [5] Local interest region description using multiple support regions
    Huang M.
    Mu Z.
    Zeng H.
    [J]. J. Opt., 3 (290-297): : 290 - 297
  • [6] Face description with local binary patterns:: Application to face recognition
    Ahonen, Timo
    Hadid, Abdenour
    Pietikainen, Matti
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (12) : 2037 - 2041
  • [7] LIGHT FIELD LOCAL BINARY PATTERNS DESCRIPTION FOR FACE RECOGNITION
    Sepas-Moghaddam, Alireza
    Correia, Paulo Lobato
    Pereira, Fernando
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3815 - 3819
  • [8] Robust method for interest region description based on local intensity binary pattern
    Yang, Yi
    Duan, Fajie
    Jiang, Jiajia
    Ma, Ling
    Zheng, Hao
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2017, 26 (04)
  • [9] Color texture description with novel local binary patterns for effective image retrieval
    Singh, Chandan
    Walia, Ekta
    Kaur, Kanwal Preet
    [J]. PATTERN RECOGNITION, 2018, 76 : 50 - 68
  • [10] Local operators to detect regions of interest
    Di Gesu, V
    Valenti, C
    Strinati, L
    [J]. PATTERN RECOGNITION LETTERS, 1997, 18 (11-13) : 1077 - 1081