A NOTE ON VALUES OF BEATTY SEQUENCES THAT ARE FREE OF LARGE PRIME FACTORS

被引:3
|
作者
Akbal, Yildirim [1 ]
机构
[1] Atilim Univ, Dept Math, TR-06830 Ankara, Turkey
关键词
Beatty sequences; exponential sums; friable numbers; INTEGERS;
D O I
10.4064/cm7715-2-2019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha and beta be fixed real numbers and suppose that alpha > 1 is irrational and of finite type. We study values of the non-homogeneous Beatty sequence {left perpendicular alpha n + beta right perpendicular}(n=1)(infinity)that are free of large prime factors, where left perpendicularxright perpendicular is the largest integer not exceeding x.
引用
收藏
页码:53 / 63
页数:11
相关论文
共 50 条
  • [1] Prime numbers as values of nested Beatty sequences
    Akbal, Yildirim
    [J]. RAMANUJAN JOURNAL, 2024, 64 (04): : 1303 - 1322
  • [2] Polynomial values free of large prime factors
    Cécile Dartyge
    Gérald Tenenbaum
    Greg Martin
    [J]. Periodica Mathematica Hungarica, 2002, 43 (1-2) : 111 - 119
  • [3] PRIME NUMBERS WITH BEATTY SEQUENCES
    Banks, William D.
    Shparlinski, Igor E.
    [J]. COLLOQUIUM MATHEMATICUM, 2009, 115 (02) : 147 - 157
  • [4] Prime divisors in Beatty sequences
    Banks, William D.
    Shparlinski, Igor E.
    [J]. JOURNAL OF NUMBER THEORY, 2007, 123 (02) : 413 - 425
  • [5] SEQUENCES WITH LARGE NUMBERS OF PRIME VALUES
    ABEL, U
    SIEBERT, H
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (02): : 167 - 169
  • [6] On values of n2 + 1 free of large prime factors
    Glyn Harman
    [J]. Archiv der Mathematik, 2008, 90 : 239 - 245
  • [7] On values of n2+1 free of large prime factors
    Harman, Glyn
    [J]. ARCHIV DER MATHEMATIK, 2008, 90 (03) : 239 - 245
  • [8] ON INTEGERS FREE OF LARGE PRIME FACTORS
    HILDEBRAND, A
    TENENBAUM, G
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 296 (01) : 265 - 290
  • [9] Distribution of values of some multiplicative functions over integers free of large prime factors
    Smati, A
    Wu, J
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1999, 50 (197): : 111 - 130
  • [10] Distribution of values of Euler's function over integers free of large prime factors
    Smati, A
    Wu, J
    [J]. ACTA ARITHMETICA, 1996, 77 (02) : 139 - 155