Regression models with arbitrarily interval-censored observations

被引:14
|
作者
Li, LX [1 ]
Pu, ZW [1 ]
机构
[1] Univ New Orleans, Dept Math, New Orleans, LA 70148 USA
关键词
least squares regression; generalized maximum likelihood estimator; proportional hazards model; self-consistent estimator;
D O I
10.1080/03610929908832372
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By arbitrarily interval censoring we mean a lifetime could be either right-censored, left-censored, strictly interval-censored, or observed exactly. In this paper, we shall study the least squares regression and Cox regression models when data are subject to said censoring scheme. Simulations and an application of a set of cancer treatment data are studied for investigating the performance of the proposed methods.
引用
收藏
页码:1547 / 1563
页数:17
相关论文
共 50 条
  • [1] Bayesian Regression Models for Interval-censored Data in R
    Anderson-Bergman, Clifford
    [J]. R JOURNAL, 2017, 9 (02): : 487 - 498
  • [2] REGRESSION WITH INTERVAL-CENSORED DATA
    RABINOWITZ, D
    TSIATIS, A
    ARAGON, J
    [J]. BIOMETRIKA, 1995, 82 (03) : 501 - 513
  • [3] SmoothHazard: An R Package for Fitting Regression Models to Interval-Censored Observations of Illness-Death Models
    Touraine, Celia
    Gerds, Thomas A.
    Joly, Pierre
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 79 (07): : 1 - 22
  • [4] Residual analysis in linear regression models with an interval-censored covariate
    Topp, R
    Gómez, G
    [J]. STATISTICS IN MEDICINE, 2004, 23 (21) : 3377 - 3391
  • [5] Nonparametric Regression with Interval-Censored Data
    Wen Li DENG
    Zu Kang ZHENG
    Ri Quan ZHANG
    [J]. Acta Mathematica Sinica,English Series, 2014, 30 (08) : 1422 - 1434
  • [6] Nonparametric Regression with Interval-Censored Data
    Deng, Wen Li
    Zheng, Zu Kang
    Zhang, Ri Quan
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (08) : 1422 - 1434
  • [7] Hazard regression with interval-censored data
    [J]. Biometrics, 4 (1485):
  • [8] Nonparametric regression with interval-censored data
    Wen Li Deng
    Zu Kang Zheng
    Ri Quan Zhang
    [J]. Acta Mathematica Sinica, English Series, 2014, 30 : 1422 - 1434
  • [9] Robust Nonparametric Estimation of Monotone Regression Functions with Interval-Censored Observations
    Zhang, Ying
    Cheng, Gang
    Tu, Wanzhu
    [J]. BIOMETRICS, 2016, 72 (03) : 720 - 730
  • [10] Interval-Censored Linear Quantile Regression
    Choi, Taehwa
    Park, Seohyeon
    Cho, Hunyong
    Choi, Sangbum
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024,