Phantom cascades: The effect of hidden nodes on information diffusion

被引:8
|
作者
Belak, Vaclav [1 ]
Mashhadi, Afra [2 ]
Sala, Alessandra [2 ]
Morrison, Donn [3 ]
机构
[1] Insight Ctr Data Analyt Galway, Galway, Ireland
[2] Bell Labs, Dublin, Ireland
[3] Norwegian Univ Sci & Technol, Dept Comp & Informat Sci, N-7034 Trondheim, Norway
基金
爱尔兰科学基金会;
关键词
Information cascades; Information diffusion; Online social networks; Independent cascade model;
D O I
10.1016/j.comcom.2015.07.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Research on information diffusion generally assumes complete knowledge of the underlying network. However, in the presence of factors such as increasing privacy awareness, restrictions on application programming interfaces (APIs) and sampling strategies, this assumption rarely holds in the real world which in turn leads to an underestimation of the size of information cascades. In this work we study the effect of hidden network structure on information diffusion processes. We characterise information cascades through activation paths traversing visible and hidden parts of the network. We quantify diffusion estimation error while varying the amount of hidden structure in five empirical and synthetic network datasets and demonstrate the effect of topological properties on this error. Finally, we suggest practical recommendations for practitioners and propose a model to predict the cascade size with minimal information regarding the underlying network. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:12 / 21
页数:10
相关论文
共 50 条
  • [1] The role of hidden influentials in the diffusion of online information cascades
    Raquel A Baños
    Javier Borge-Holthoefer
    Yamir Moreno
    EPJ Data Science, 2
  • [2] The role of hidden influentials in the diffusion of online information cascades
    Banos, Raquel A.
    Borge-Holthoefer, Javier
    Moreno, Yamir
    EPJ DATA SCIENCE, 2013, 2 (01) : 1 - 16
  • [3] Variational Information Diffusion for Probabilistic Cascades Prediction
    Zhou, Fan
    Xu, Xovee
    Zhang, Kunpeng
    Trajcevski, Goce
    Zhong, Ting
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2020, : 1618 - 1627
  • [4] Information Diffusion Prediction via Recurrent Cascades Convolution
    Chen, Xueqin
    Zhou, Fan
    Zhang, Kunpeng
    Trajcevski, Goce
    Zhong, Ting
    Zhang, Fengli
    2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019), 2019, : 770 - 781
  • [5] Information cascades blocking through influential nodes identification on social networks
    Li L.
    Zheng X.
    Han J.
    Hao F.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (06) : 7519 - 7530
  • [6] The phantom effect in information visualization
    Pereira, Carolina
    Alves, Tomás
    Gama, Sandra
    Computers and Graphics, 2024, 125
  • [7] SEIQRS Information Diffusion Model with the Change of Nodes
    Hu, Xin
    Lu, Shi-wei
    Wang, Gang
    Ma, Run-nian
    2ND INTERNATIONAL CONFERENCE ON COMMUNICATIONS, INFORMATION MANAGEMENT AND NETWORK SECURITY (CIMNS 2017), 2017, : 174 - 180
  • [8] Hidden network reconstruction from information diffusion
    Crawford, Forrest W.
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 180 - 185
  • [9] Finding critical nodes in a complex network from information diffusion and Matthew effect aggregation
    Sun, Zejun
    Sun, Yanan
    Chang, Xinfeng
    Wang, Feifei
    Wang, Qiming
    Ullah, Aman
    Shao, Junming
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 233
  • [10] Extracting influential nodes on a social network for information diffusion
    Kimura, Masahiro
    Saito, Kazumi
    Nakano, Ryohei
    Motoda, Hiroshi
    DATA MINING AND KNOWLEDGE DISCOVERY, 2010, 20 (01) : 70 - 97