A new design of metal supported micro-tubular solid oxide fuel cell with sandwich structure

被引:9
|
作者
Lv, Haipeng [1 ]
Huang, Zuzhi [1 ]
Zhang, Guangjun [1 ]
Chen, Ting [1 ]
Wang, Shaorong [1 ]
机构
[1] China Univ Min & Technol, Sch Chem & Chem Engn, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Micro-tubular solid oxide fuel cell; 430 stainless steel support; Sandwich structure; Dip-coating; Co-sintering; Impregnation; PHASE-INVERSION METHOD; HIGH-PERFORMANCE; FABRICATION; STABILITY; ELECTROLYTE; PROGRESS; SPRAY; SOFCS;
D O I
10.1016/j.ijhydene.2022.07.218
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Micro-tubular solid oxide fuel cell (MT-SOFC) is considered as a promising choice for portable applications. In this work, we developed a novel metal supported MT-SOFC with porous 430 stainless steel support| 430 stainless steel-SSZ| SSZ| porous SSZ sandwich structure by dip coating and one-step co-sintering technology. The metal supported MTSOFC showed good connection between each function layer and exhibited a significant maximum power density of 271 mW cm(-2) at 800 degrees C. Although the power density showed about 19.6% off after 14 thermal cycles between 600 degrees C and 800 degrees C, and about 5% per 100 h degradation rate during the 200 h long-term stability test at 700 degrees C and 0.7 V, the structure of the single cell could be maintained well and no crack and Sr diffusion was observed. As the result, the ohmic resistance of the cell kept unchanged during the thermal cycling and long-term test. The relatively fast degradation was attributed to the Ni and LSM particles coarsening and agglomeration, which will be improved in the further work. This work presented a low-cost and simple way to fabricate the metal supported MT-SOFCs with good electrochemical performance. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:33420 / 33428
页数:9
相关论文
共 50 条
  • [1] Thermal stress modeling of anode supported micro-tubular solid oxide fuel cell
    Cui, Daan
    Cheng, Mojie
    JOURNAL OF POWER SOURCES, 2009, 192 (02) : 400 - 407
  • [2] Characterisation of electrical performance of anode supported micro-tubular solid oxide fuel cell with methane fuel
    Lee, Tae Jung
    Kendall, Kevin
    JOURNAL OF POWER SOURCES, 2008, 181 (02) : 195 - 198
  • [3] Control system design for micro-tubular solid oxide fuel cells
    Tsai, Tsang-, I
    Du, Shangfeng
    Fisher, Peter
    Kendall, Kevin
    Steinberger-Wilckens, Robert
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2015, 10 (04) : 441 - 445
  • [4] Numerical modelling of the micro-tubular solid oxide fuel cell stacks
    Pianko-Oprych, Paulina
    Jaworski, Zdzislaw
    PRZEMYSL CHEMICZNY, 2012, 91 (09): : 1813 - 1815
  • [5] A transient analysis of a micro-tubular solid oxide fuel cell (SOFC)
    Serincan, Mustafa Fazil
    Pasaogullari, Ugur
    Sammes, Nigel M.
    JOURNAL OF POWER SOURCES, 2009, 194 (02) : 864 - 872
  • [6] Geometric Design of Anode-Supported Micro-Tubular Solid Oxide Fuel Cells by Multiphysics Simulations
    Shi, Hong-yu
    Zhu, Jiang
    Lin, Zi-jing
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2017, 30 (04) : 411 - 417
  • [7] Residual stress analysis of a micro-tubular solid oxide fuel cell
    Kong, Wei
    Zhang, Wenxuan
    Zhang, Shundong
    Zhang, Qiang
    Su, Shichuan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (36) : 16173 - 16180
  • [8] Mechanical properties of micro-tubular solid oxide fuel cell anodes
    Roy, Brycen R.
    Sammes, Nigel M.
    Suzuki, Toshio
    Funahashi, Yoshihiro
    Awano, Masanobu
    JOURNAL OF POWER SOURCES, 2009, 188 (01) : 220 - 224
  • [9] Thermal stresses in an operating micro-tubular solid oxide fuel cell
    Serincan, Mustafa Fazil
    Pasaogullari, Ugur
    Sammes, Nigel M.
    JOURNAL OF POWER SOURCES, 2010, 195 (15) : 4905 - 4914
  • [10] An anode-supported micro-tubular solid oxide fuel cell with redox stable composite cathode
    Zhang, Xiaozhen
    Lin, Bin
    Ling, Yihan
    Dong, Yingchao
    Meng, Guangyao
    Liu, Xingqin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (16) : 8654 - 8662