Edge Singular Behavior for the Heat Equation on Polyhedral Cylinders in R3

被引:0
|
作者
Kweon, Jae Ryong [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, Kyungpook, South Korea
基金
新加坡国家研究基金会;
关键词
Edge singularity; Regularity; Stress intensity function; COMPRESSIBLE STOKES SYSTEM; DOMAINS;
D O I
10.1007/s11118-012-9288-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Heat equation in the polyhedral cylinder with a non-convex edge. We construct the singularity functions depending on the time and edge axis, and the coefficient of the singularity, called the stress intensity distributions, and show regularity results for the solution and the coefficient. The regularity is achieved in the (not weighted) Sobolev space in the L-2 and L (q) spaces, respectively. An application to the finite polyhedral cylinder is described.
引用
收藏
页码:589 / 610
页数:22
相关论文
共 50 条
  • [1] The local behavior of the solution of the radiosity equation at the vertices of polyhedral domains in R3
    Hansen, O
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) : 718 - 750
  • [2] FOLIATIONS BY CLOSED CYLINDERS IN R3
    PALMEIRA, CFB
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 290 (09): : 419 - 421
  • [3] About Constructing a Dual Polyhedral Cone in R3
    Polyakova, Lyudmila
    Popova, Marina
    Karelin, Vladimir
    2017 CONSTRUCTIVE NONSMOOTH ANALYSIS AND RELATED TOPICS (DEDICATED TO THE MEMORY OF V.F. DEMYANOV) (CNSA), 2017, : 263 - 265
  • [4] Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3
    He, Xiaoming
    Zou, Wenming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) : 1813 - 1834
  • [5] Parameter counting for singular monopoles on R3
    Moore, Gregory W.
    Royston, Andrew B.
    Van den Bleeken, Dieter
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (10):
  • [6] Mortar edge element methods in R3
    Hoppe, R.H.W.
    East-West Journal of Numerical Mathematics, 1999, 7 (03): : 159 - 173
  • [7] Properly immersed singly periodic minimal cylinders in R3
    López, FJ
    Rodríguez, D
    MICHIGAN MATHEMATICAL JOURNAL, 1998, 45 (03) : 507 - 528
  • [8] Computing the Voronoi cells of planes, spheres and cylinders in R3
    Hanniel, Iddo
    Elber, Gershon
    COMPUTER AIDED GEOMETRIC DESIGN, 2009, 26 (06) : 695 - 710
  • [9] On a control problem for the wave equation in R3
    Belishev M.I.
    Vakulenko A.F.
    Journal of Mathematical Sciences, 2007, 142 (6) : 2528 - 2539
  • [10] PDE IN R3 WITH STRANGE BEHAVIOR
    HILL, CD
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 22 (05) : 415 - &