Square Root Receding Horizon Information Filters for Nonlinear Dynamic System Models

被引:6
|
作者
Kim, Du Yong [1 ]
Jeon, Moongu [2 ]
机构
[1] Univ Western Australia, Sch Elect Elect & Comp Engn, Crawley, WA 6009, Australia
[2] Gwangju Inst Sci & Technol, Sch Informat & Commun, Kwangju, South Korea
关键词
Receding horizon estimation; square root filtering; unscented Kalman filtering; STATE;
D O I
10.1109/TAC.2012.2223352
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
New nonlinear filtering algorithms are designed based on a receding horizon strategy, i.e., a finite impulse response (FIR) structure, and square root information filtering to achieve high accuracy and good performance in empirical error covariance tests. The new nonlinear receding horizon filters reduce approximation errors in nonlinear filtering by considering a set of recent observations with non-informative initial conditions. By applying information filtering, we are able to manage the non-informative initial conditions, and thus propose the square root version of the algorithm as a means of retaining the positive definiteness of the error covariance. Based on the proposed strategy, we then implement known nonlinear filtering frameworks. Simulation results confirm that the new nonlinear receding horizon filters outperform existing nonlinear filters in well-known nonlinear examples.
引用
收藏
页码:1284 / 1289
页数:6
相关论文
共 50 条
  • [1] A Class of Stable Square-Root Nonlinear Information Filters
    Wang, Shiyuan
    Feng, Jiuchao
    Tse, Chi K.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (07) : 1893 - 1898
  • [2] Platoon Speed Receding Horizon Dynamic Programming and Nonlinear Control
    Wang, Qiong
    Guo, Ge
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2019, 45 (05): : 888 - 896
  • [3] Receding horizon iterative dynamic programming with discrete time models
    Rusnák, A
    Fikar, M
    Latifi, MA
    Mészáros, A
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2001, 25 (01) : 161 - 167
  • [4] Square-Root Sigma-Point Information Consensus Filters for Distributed Nonlinear Estimation
    Liu, Guoliang
    Tian, Guohui
    [J]. SENSORS, 2017, 17 (04)
  • [5] An extension of nonlinear receding horizon control for switched system with state jump
    Onodera, Y
    Yamakita, M
    [J]. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vols 1-4, 2005, : 3862 - 3867
  • [6] Stable nonlinear receding horizon regulator using RBF neural network models
    Ahmida, Zahir
    Charef, Abdelfatah
    Becerra, Victor M.
    [J]. PROCEEDINGS OF 2006 MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1 AND 2, 2006, : 605 - +
  • [7] Receding horizon control using modified iterative dynamic programming and neural network models
    Rusnák, A
    Fikar, M
    Mészáros, A
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 1999, 23 : S297 - S300
  • [8] Receding-horizon unbiased FIR filters for continuous-time state-space models without a priori initial state information
    Han, SF
    Kwon, WH
    Kim, PS
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (05) : 766 - 770
  • [9] MAXIMUM-LIKELIHOOD-ESTIMATION USING SQUARE ROOT INFORMATION FILTERS
    BIERMAN, GJ
    BELZER, MR
    VANDERGRAFT, JS
    PORTER, DW
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (12) : 1293 - 1298
  • [10] MAXIMUM-LIKELIHOOD-ESTIMATION USING SQUARE ROOT INFORMATION FILTERS
    BIERMAN, GJ
    BELZER, MR
    VANDERGRAFT, JS
    PORTER, DW
    [J]. PROCEEDINGS OF THE 1989 AMERICAN CONTROL CONFERENCE, VOLS 1-3, 1989, : 2646 - 2652