Combined estimation of semiparametric panel data models

被引:3
|
作者
Huang, Bai [1 ]
Lee, Tae-Hwy [2 ]
Ullah, Aman [2 ]
机构
[1] Cent Univ Finance & Econ, Sch Stat & Math, Beijing, Peoples R China
[2] Univ Calif Riverside, Dept Econ, Riverside, CA 92521 USA
关键词
Endogeneity; Panel data; Semiparametric FE estimator; Semiparametric RE estimator; Semiparametric combined estimator; Local asymptotics; Hausman test; NONPARAMETRIC-ESTIMATION;
D O I
10.1016/j.ecosta.2019.05.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
The combined estimation for the semiparametric panel data models is proposed. The properties of estimators for the semiparametric panel data models with random effects (RE) and fixed effects (FE) are examined. When the RE estimator suffers from endogeneity due to the individual effects correlated with the regressors, the semiparametric RE and FE estimators may be adaptively combined, with the combining weights depending on the degree of endogeneity. The asymptotic distributions of these three estimators (RE, FE, and combined estimators) for the semiparametric panel data models are derived using a local asymptotic framework. These three estimators are then compared in asymptotic risk. The semiparametric combined estimator has strictly smaller asymptotic risk than the semiparametric fixed effect estimator. The Monte Carlo study shows that the semiparametric combined estimator outperforms semiparametric FE and RE estimators except when the degrees of endogeneity and heterogeneity of the individual effects are very small. Also presented is an empirical application where the effect of public sector capital in the private economy production function is examined using the US state level panel data. (C) 2019 EcoSta Econometrics and Statistics. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 45
页数:16
相关论文
共 50 条
  • [1] Semiparametric estimation of regression models for panel data
    Horowitz, JL
    Markatou, M
    [J]. REVIEW OF ECONOMIC STUDIES, 1996, 63 (01): : 145 - 168
  • [2] Semiparametric estimation of partially linear panel data models
    Li, Q
    Stengos, T
    [J]. JOURNAL OF ECONOMETRICS, 1996, 71 (1-2) : 389 - 397
  • [3] Semiparametric efficient estimation of dynamic panel data models
    Park, Byeong U.
    Sickles, Robin C.
    Simar, Leopold
    [J]. JOURNAL OF ECONOMETRICS, 2007, 136 (01) : 281 - 301
  • [4] Semiparametric estimation of panel data models without monotonicity or separability
    Chen, Songnian
    Wang, Xi
    [J]. JOURNAL OF ECONOMETRICS, 2018, 206 (02) : 515 - 530
  • [5] SEMIPARAMETRIC ESTIMATION OF DYNAMIC BINARY CHOICE PANEL DATA MODELS
    Ouyang, Fu
    Yang, Thomas Tao
    [J]. ECONOMETRIC THEORY, 2024,
  • [6] On instrumental variable estimation of semiparametric dynamic panel data models
    Baltagi, BH
    Li, Q
    [J]. ECONOMICS LETTERS, 2002, 76 (01) : 1 - 9
  • [7] Semiparametric-efficient estimation of AR(1) panel data models
    Park, BU
    Sickles, RC
    Simar, L
    [J]. JOURNAL OF ECONOMETRICS, 2003, 117 (02) : 279 - 309
  • [8] Semiparametric estimation of generalized transformation panel data models with nonstationary error
    Wang, Xi
    Chen, Songnian
    [J]. ECONOMETRICS JOURNAL, 2020, 23 (03): : 386 - 402
  • [9] Sieve estimation of semiparametric accelerated mean models with panel count data
    Hu, Xiangbin
    Su, Wen
    Zhao, Xingqiu
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (01): : 1316 - 1343
  • [10] Maximum likelihood estimation for semiparametric regression models with panel count data
    Zeng, Donglin
    Lin, D. Y.
    [J]. BIOMETRIKA, 2021, 108 (04) : 947 - 963