Dynamics near the critical point: The hot renormalization group in quantum field theory

被引:12
|
作者
Boyanovsky, D [1 ]
de Vega, HJ
机构
[1] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[2] Univ Paris 06, LPTHE, F-75252 Paris 05, France
[3] Univ Paris 07, F-75252 Paris 05, France
关键词
D O I
10.1103/PhysRevD.65.085038
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The perturbative approach to the description of long-wavelength excitations at high temperature breaks down near the critical point of a second order phase transition. We study the dynamics of these excitations in a relativistic scalar field theory at and near the critical point via a renormalization group approach at high temperature and an epsilon expansion in d=5-epsilon space-time dimensions. The long-wavelength physics is determined by a nontrivial fixed point of the renormalization group. At the critical point we find that the dispersion relation and width of quasiparticles of momentum p are omega(p)similar top(z) and Gamma(p)similar to(z-1)omega(p), respectively, and the group velocity of quasiparticles v(g)similar top(z-1) vanishes in the long-wavelength limit at the critical point. Away from the critical point for Tgreater than or similar toT(c) we find omega(p)similar toxi(-z)[1+(pxi)(2z)](1/2) and Gamma(p)similar to(z-1)omega(p)(pxi)(2z)/[1+(pxi)(2z)] with xi the finite temperature correlation length xiproportional to\T-T-c\(-nu). The new dynamical exponent z results from anisotropic renormalization in the spatial and time directions. For a theory with O(N) symmetry we find z=1+epsilon(N+2)/(N+8)(2)+O(epsilon(2)). This dynamical critical exponent describes a new universality class for dynamical critical phenomena in quantum field theory. Critical slowing down, i.e., a vanishing width in the long-wavelength limit, and the validity of the quasiparticle picture emerge naturally from this analysis.
引用
收藏
页码:850381 / 8503826
页数:26
相关论文
共 50 条
  • [1] Dynamics near QCD critical point by dynamic renormalization group
    Minami, Yuki
    [J]. PHYSICAL REVIEW D, 2011, 83 (09):
  • [2] Dissipative spin dynamics near a quantum critical point: Numerical renormalization group and Majorana diagrammatics
    Florens, S.
    Freyn, A.
    Venturelli, D.
    Narayanan, R.
    [J]. PHYSICAL REVIEW B, 2011, 84 (15):
  • [3] Finite quantum field theory and renormalization group
    M. A. Green
    J. W. Moffat
    [J]. The European Physical Journal Plus, 136
  • [4] Inverse Renormalization Group in Quantum Field Theory
    Bachtis, Dimitrios
    Aarts, Gert
    Di Renzo, Francesco
    Lucini, Biagio
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (08)
  • [5] CHARGE RENORMALIZATION GROUP IN QUANTUM FIELD THEORY
    BOGOLJUBOV, NN
    SIRKOV, DV
    [J]. NUOVO CIMENTO, 1956, 3 (05): : 845 - 863
  • [6] Finite quantum field theory and renormalization group
    Green, M. A.
    Moffat, J. W.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (09):
  • [7] Wavelets and Renormalization Group in Quantum Field Theory Problems
    Altaisky, M. V.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2018, 81 (06) : 786 - 791
  • [8] Summing Logarithms in Quantum Field Theory: The Renormalization Group
    D. G. C. Mckeon
    [J]. International Journal of Theoretical Physics, 1998, 37 : 817 - 826
  • [9] Wavelets and Renormalization Group in Quantum Field Theory Problems
    M. V. Altaisky
    [J]. Physics of Atomic Nuclei, 2018, 81 : 786 - 791
  • [10] Summing logarithms in quantum field theory: The renormalization group
    McKeon, DGC
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (02) : 817 - 826