SEGMENTATION OF THE COMPLETE SUPERIOR CEREBELLAR PEDUNCLES USING A MULTI-OBJECT GEOMETRIC DEFORMABLE MODEL

被引:0
|
作者
Ye, Chuyang [1 ]
Bogovic, John A. [1 ]
Ying, Sarah H. [2 ]
Prince, Jerry L. [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Radiol Neurol & Ophthalmol, Baltimore, MD 21218 USA
关键词
SCP; MGDM; GGVF; Westin index; Fiber crossing; DIFFUSION; IMAGES; TRACTS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The superior cerebellar peduncles (SCPs) are white matter tracts that serve as the major efferent pathways from the cerebellum to the thalamus. With diffusion tensor images (DTI), tractography algorithms or volumetric segmentation methods have been able to reconstruct part of the SCPs. However, when the fibers cross, the primary eigenvector (PEV) no longer represents the primary diffusion direction. Therefore, at the crossing of the left and right SCP, known as the decussation of the SCPs (dSCP), fiber tracts propagate incorrectly. To our knowledge, previous methods have not been able to segment the SCPs correctly. In this work, we explore the diffusion properties and seek to volumetrically segment the complete SCPs. The non-crossing SCPs and dSCP are modeled as different objects. A multi-object geometric deformable model is employed to define the boundaries of each piece of the SCPs, with the forces derived from diffusion properties as well as the PEV. We tested our method on a software phantom and real subjects. Results indicate that our method is able to the resolve the crossing and segment the complete SCPs with repeatability.
引用
收藏
页码:49 / 52
页数:4
相关论文
共 50 条
  • [1] Segmentation of the Cerebellar Peduncles Using a Random Forest Classifier and a Multi-object Geometric Deformable Model: Application to Spinocerebellar Ataxia Type 6
    Ye, Chuyang
    Yang, Zhen
    Ying, Sarah H.
    Prince, Jerry L.
    [J]. NEUROINFORMATICS, 2015, 13 (03) : 367 - 381
  • [2] Segmentation of the Cerebellar Peduncles Using a Random Forest Classifier and a Multi-object Geometric Deformable Model: Application to Spinocerebellar Ataxia Type 6
    Chuyang Ye
    Zhen Yang
    Sarah H. Ying
    Jerry L. Prince
    [J]. Neuroinformatics, 2015, 13 : 367 - 381
  • [3] Multi-object 3D segmentation of brain structures using a geometric deformable model with a priori knowledge
    Baghdadi, Mohamed
    Benamrane, Nacera
    Boukadoum, Mounir
    Sais, Lakhdar
    [J]. IMAGING SCIENCE JOURNAL, 2023,
  • [4] Automatic Cell Segmentation in Fluorescence Images of Confluent Cell Mono layers Using Multi-object Geometric Deformable Model
    Yang, Zhen
    Bogovic, John A.
    Carass, Aaron
    Ye, Mao
    Searson, Peter C.
    Prince, Jerry L.
    [J]. MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
  • [5] Parcellation of the Thalamus Using Diffusion Tensor Images and a Multi-object Geometric Deformable Model
    Ye, Chuyang
    Bogovic, John A.
    Ying, Sarah H.
    Prince, Jerry L.
    [J]. MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
  • [6] Coupling deformable models for multi-object segmentation
    Kainmueller, Dagmar
    Lamecker, Hans
    Zachow, Stefan
    Hege, Hans-Christian
    [J]. BIOMEDICAL SIMULATION, PROCEEDINGS, 2008, 5104 : 69 - 78
  • [7] Multi-object segmentation framework using deformable models for medical imaging analysis
    Rafael Namías
    Juan Pablo D’Amato
    Mariana del Fresno
    Marcelo Vénere
    Nicola Pirró
    Marc-Emmanuel Bellemare
    [J]. Medical & Biological Engineering & Computing, 2016, 54 : 1181 - 1192
  • [8] Multi-object segmentation framework using deformable models for medical imaging analysis
    Namias, Rafael
    Pablo D'Amato, Juan
    del Fresno, Mariana
    Venere, Marcelo
    Pirro, Nicola
    Bellemare, Marc-Emmanuel
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2016, 54 (08) : 1181 - 1192
  • [9] A probabilistic multi-object deformable model for MR SPECT brain image registration and segmentation
    Nikou, C
    Heitz, F
    Armspach, JP
    [J]. MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 170 - 181
  • [10] A multiple object geometric deformable model for image segmentation
    Bogovic, John A.
    Prince, Jerry L.
    Bazin, Pierre-Louis
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2013, 117 (02) : 145 - 157