Uncertainty quantification;
Monte Carlo simulation;
Stratified sampling;
Latin hypercube sampling;
Sample size extension;
LATIN HYPERCUBE DESIGN;
L-2-DISCREPANCY;
CONSTRUCTION;
VALIDATION;
SUBJECT;
D O I:
10.1016/j.ress.2015.05.023
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
A general adaptive approach rooted in stratified sampling (SS) is proposed for sample-based uncertainty quantification (UQ). To motivate its use in this context the space-filling, orthogonality, and projective properties of SS are compared with simple random sampling and Latin hypercube sampling (LHS). SS is demonstrated to provide attractive properties for certain classes of problems. The proposed approach, Refined Stratified Sampling (RSS), capitalizes on these properties through an adaptive process that adds samples sequentially by dividing the existing subspaces of a stratified design. RSS is proven to reduce variance compared to traditional stratified sample extension methods while providing comparable or enhanced variance reduction when compared to sample size extension methods for LHS - which do not afford the same degree of flexibility to facilitate a truly adaptive UQ process. An initial investigation of optimal stratification is presented and motivates the potential for major advances in variance reduction through optimally designed RSS. Potential paths for extension of the method to high dimension are discussed. Two examples are provided. The first involves UQ for a low dimensional function where convergence is evaluated analytically. The second presents a study to asses the response variability of a floating structure to an underwater shock. (C) 2015 Elsevier Ltd. All rights reserved.
机构:
Statistical Laboratory, Center for Mathematical Sciences, Wilberforce Road, Cambridge,CB3 0WB, United KingdomStatistical Laboratory, Center for Mathematical Sciences, Wilberforce Road, Cambridge,CB3 0WB, United Kingdom
Carpentier, Alexandra
Munos, Remi
论文数: 0引用数: 0
h-index: 0
机构:
Google DeepMind, London, United Kingdom
Inria Lille, Nord Europe, FranceStatistical Laboratory, Center for Mathematical Sciences, Wilberforce Road, Cambridge,CB3 0WB, United Kingdom
Munos, Remi
Antosy, András
论文数: 0引用数: 0
h-index: 0
机构:
Budapest University of Technology and Economics, 3 Muegyetem rkp., Budapest,1111, HungaryStatistical Laboratory, Center for Mathematical Sciences, Wilberforce Road, Cambridge,CB3 0WB, United Kingdom
机构:
Univ Calif Los Angeles, Dept Radiat Oncol, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Radiat Oncol, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USA
DeMarco, JJ
Solberg, TD
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Radiat Oncol, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Radiat Oncol, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USA
Solberg, TD
Chetty, I
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Radiat Oncol, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Radiat Oncol, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USA
Chetty, I
Smathers, JB
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Radiat Oncol, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Radiat Oncol, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USA