Gravitational collapse of colloidal gels: non-equilibrium phase separation driven by osmotic pressure

被引:37
|
作者
Padmanabhan, Poornima [1 ]
Zia, Roseanna [2 ]
机构
[1] Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
[2] Stanford Univ, Chem Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
TRANSIENT GELS; OSCILLATORY SHEAR; POLYMER MIXTURES; NORMAL STRESSES; DEPLETION GELS; SUSPENSIONS; PARTICLES; SEDIMENTATION; DISPERSIONS; ATTRACTION;
D O I
10.1039/c8sm00002f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Delayed gravitational collapse of colloidal gels is characterized by initially slow compaction that gives way to rapid bulk collapse, posing interesting questions about the underlying mechanistic origins. Here we study gel collapse utilizing large-scale dynamic simulation of a freely draining gel of physically bonded particles subjected to gravitational forcing. The hallmark regimes of collapse are recovered: slow compaction, transition to rapid collapse, and long-time densification. Microstructural changes are monitored by tracking particle positions, coordination number, and bond dynamics, along with volume fraction, osmotic pressure, and potential energy. Together these reveal the surprising result that collapse can occur with a fully intact network, where the tipping point arises when particle migration dissolves strands in a capillary-type instability. While it is possible for collapse to rupture a gel network into clusters that then sediment, and hydrodynamic interactions can make interesting contributions, neither is necessary. Rather, we find that the `` delay'' arises from gravity-enhanced coarsening, which triggers the reemergence of phase separation. The mechanism of this transition is a leap toward lower potential energy of the gel, driven by bulk negative osmotic pressure that condenses the particle phase: the gel collapses in on itself under negative osmotic pressure allowing the gel, to tunnel through the equilibrium phase diagram to a higher volume fraction `` state''. Remarkably, collapse stops when condensation stops, when gravitational advection produces a positive osmotic pressure, re-arresting the gel.
引用
收藏
页码:3265 / 3287
页数:23
相关论文
共 50 条
  • [1] Phase mechanics of colloidal gels: osmotic pressure drives non-equilibrium phase separation
    Johnson, Lilian C.
    Zia, Roseanna N.
    [J]. SOFT MATTER, 2021, 17 (14) : 3784 - 3797
  • [2] Phase mechanics of colloidal gels: osmotic pressure drives non-equilibrium phase separation (vol 17, pg 3784, 2021)
    Johnson, Lilian C.
    Zia, Roseanna N.
    [J]. SOFT MATTER, 2021, 17 (31) : 7418 - 7418
  • [3] Colloidal gels: equilibrium and non-equilibrium routes
    Zaccarelli, Emanuela
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (32)
  • [4] Vitrification is a spontaneous non-equilibrium transition driven by osmotic pressure
    Wang, J. Galen
    Zia, Roseanna N.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (18)
  • [5] Gravitational collapse of colloidal gels
    Manley, S
    Skotheim, JM
    Mahadevan, L
    Weitz, DA
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (21)
  • [6] A microfluidic pumping mechanism driven by non-equilibrium osmotic effects
    Atzberger, Paul J.
    Isaacson, Samuel
    Peskin, Charles S.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (14) : 1168 - 1179
  • [7] Experimental determination of order in non-equilibrium solids using colloidal gels
    Gao, YX
    Kilfoil, M
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (44) : S5191 - S5202
  • [8] Non-equilibrium behavior of sticky colloidal particles: beads, clusters and gels
    H. Sedgwick
    K. Kroy
    A. Salonen
    M. B. Robertson
    S. U. Egelhaaf
    W. C.K. Poon
    [J]. The European Physical Journal E, 2005, 16 : 77 - 80
  • [9] Non-equilibrium behavior of sticky colloidal particles: beads, clusters and gels
    Sedgwick, H
    Kroy, K
    Salonen, A
    Robertson, MB
    Egelhaaf, SU
    Poon, WCK
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2005, 16 (01): : 77 - 80
  • [10] Gravitational collapse of depletion-induced colloidal gels
    Harich, R.
    Blythe, T. W.
    Hermes, M.
    Zaccarelli, E.
    Sederman, A. J.
    Gladden, L. F.
    Poon, W. C. K.
    [J]. SOFT MATTER, 2016, 12 (19) : 4300 - 4308