Topological strings, two-dimensional Yang-Mills Theory and Chern-Simons theory on torus bundles

被引:0
|
作者
Caporaso, Nicola [1 ]
Cirafici, Michele [2 ,3 ]
Griguolo, Luca [4 ]
Pasquetti, Sara [4 ]
Seminara, Domenico [5 ]
Szabo, Richard J. [2 ,3 ]
机构
[1] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[4] Univ Parma, Dipartimento Fis, Ist Nazl Fis Nucl, Grp Collegato Parma, I-43100 Parma, Italy
[5] Polo Sci Univ Firenze, Dipartimento Fis, Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy
关键词
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the relations between two Yang-Mills theory on the torus, topological string theory on a Calabi-Yau threefold whose local geometry is the sum of two line bundles over the torus, and Chern-Simons theory on torus bundles. The chiral partition function of the Yang-Mills gauge theory in the large N limit is shown to coincide with the topological string amplitude computed by topological vertex techniques. We use Yang-Mills theory as an efficient tool for the computation of Gromov-Witten invariants and derive explicitly their relation with Hurwitz number of the torus. We calculate the Gopakumar-Vafa invariants, whose integrality gives a non-trivial confirmation of the conjectured non-perturbative relation between two-dimensional Yang-Mills theory and topolopical string theory. We also demonstrate how the gauge theory leads to a simple combinatorial solution for the Donaldson-Thomas theory of the Calabi-Yau background. We, match the instanton representation of Yang-Mills theory oil the torus with the non-abelian localization of Chern-Simons gauge, theory on torus bundles Over the circle. We also comment oil how these results call be applied to the computation of exact degeneracies of BPS black holes in the local Calabi-Yau background.
引用
收藏
页码:981 / 1058
页数:78
相关论文
共 50 条
  • [1] Chern-Simons matrix models, two-dimensional Yang-Mills theory and the Sutherland model
    Szabo, Richard J.
    Tierz, Miguel
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (26)
  • [2] Supersymmetric Yang-Mills theory as higher Chern-Simons theory
    Samann, Christian
    Wolf, Martin
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (07):
  • [3] Supersymmetric Yang-Mills theory as higher Chern-Simons theory
    Christian Sämann
    Martin Wolf
    [J]. Journal of High Energy Physics, 2017
  • [4] Charges of monopole operators in Chern-Simons Yang-Mills theory
    Marcus K. Benna
    Igor R. Klebanov
    Thomas Klose
    [J]. Journal of High Energy Physics, 2010
  • [5] Chern-Simons diffusion rate in a holographic Yang-Mills theory
    Ben Craps
    Carlos Hoyos
    Piotr Surówka
    Pieter Taels
    [J]. Journal of High Energy Physics, 2012
  • [6] Chern-Simons diffusion rate in a holographic Yang-Mills theory
    Craps, Ben
    Hoyos, Carlos
    Surowka, Piotr
    Taels, Pieter
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (11):
  • [7] Charges of monopole operators in Chern-Simons Yang-Mills theory
    Benna, Marcus K.
    Klebanov, Igor R.
    Klose, Thomas
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (01):
  • [8] Chern-Simons theory and topological strings
    Mariño, M
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (02) : 675 - 720
  • [9] TOPOLOGICAL YANG-MILLS FIELD-THEORY AS THE STOCHASTIC QUANTIZATION OF CHERN-SIMONS GAUGE-THEORY
    YU, Y
    [J]. PHYSICAL REVIEW D, 1989, 40 (04) : 1301 - 1310
  • [10] Matrix strings in two-dimensional Yang-Mills theory
    Kogan, II
    Szabo, RJ
    [J]. PHYSICS LETTERS B, 1997, 404 (3-4) : 276 - 284