The Alternation Hierarchy of the μ-calculus over Weakly Transitive Frames

被引:2
|
作者
Pacheco, Leonardo [1 ]
Tanaka, Kazuyuki [1 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi, Japan
关键词
mu-calculus; Fragments of the alternation hierarchy; Topological modal logic; Epistemic logic; KNOWLEDGE; LOGIC;
D O I
10.1007/978-3-031-15298-6_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is known that the mu-calculus collapses to its alternation-free fragment over transitive frames and to modal logic over equivalence relations. We adapt a proof by D'Agostino and Lenzi to show that the mu-calculus collapses to its alternation-free fragment over weakly transitive frames. As a consequence, we show that the mu-calculus with derivative topological semantics collapses to its alternation-free fragment. We also study the collapse over frames of S4.2, S4.3, S4.3.2, S4.4 and KD45, logics important for Epistemic Logic. At last, we use the mu-calculus to define degrees of ignorance on Epistemic Logic and study the implications of mu-calculus's collapse over the logics above.
引用
收藏
页码:207 / 220
页数:14
相关论文
共 50 条
  • [1] On the μ-calculus over transitive and finite transitive frames
    D'Agostino, Giovanna
    Lenzi, Giacomo
    [J]. THEORETICAL COMPUTER SCIENCE, 2010, 411 (50) : 4273 - 4290
  • [2] The μ-calculus alternation hierarchy collapses over structures with restricted connectivity
    Gutierrez, Julian
    Klaedtke, Felix
    Lange, Martin
    [J]. THEORETICAL COMPUTER SCIENCE, 2014, 560 : 292 - 306
  • [3] The μ-Calculus Alternation Depth Hierarchy is infinite over finite planar graphs
    D'Agostino, Giovanna
    Lenzi, Giacomo
    [J]. THEORETICAL COMPUTER SCIENCE, 2018, 737 : 40 - 61
  • [4] The McKinsey Axiom on Weakly Transitive Frames
    Chen, Qian
    Ma, Minghui
    [J]. STUDIA LOGICA, 2024,
  • [5] The mu-Calculus Alternation Hierarchy Collapses over Structures with Restricted Connectivity
    Gutierrez, Julian
    Klaedtke, Felix
    Lange, Martin
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (96): : 113 - 126
  • [6] Deciding the first level of the μ-calculus alternation hierarchy
    Küsters, A
    Wilke, T
    [J]. FST TCS 2002: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEOETICAL COMPUTER SCIENCE, PROCEEDINGS, 2002, 2556 : 241 - 252
  • [7] A measured collapse of the modal μ-calculus alternation hierarchy
    Bustan, D
    Kupferman, O
    Vardi, MY
    [J]. STACS 2004, PROCEEDINGS, 2004, 2996 : 522 - 533
  • [8] Simplifying the modal mu-calculus alternation hierarchy
    Bradfield, JC
    [J]. STACS 98 - 15TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 1998, 1373 : 39 - 49
  • [9] The modal mu-calculus alternation hierarchy is strict
    Bradfield, JC
    [J]. THEORETICAL COMPUTER SCIENCE, 1998, 195 (02) : 133 - 153
  • [10] The μ-calculus alternation-depth hierarchy is strict on binary trees
    Arnold, A
    [J]. RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1999, 33 (4-5): : 329 - 339