A detail-preserving scale-driven approach to change detection in multitemporal SAR images

被引:310
|
作者
Bovolo, F [1 ]
Bruzzone, L [1 ]
机构
[1] Univ Trent, Dept Informat & Commun Technol, I-38050 Trento, Italy
来源
关键词
change detection; image analysis; multiscale image decomposition; remote sensing; synthetic aperture radar (SAR);
D O I
10.1109/TGRS.2005.857987
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper presents a novel approach to change detection in multitemporal synthetic aperture radar (SAR) images. The proposed approach exploits a wavelet-based multiscale decomposition of the log-ratio image (obtained by a comparison of the original multitemporal data) aimed at achieving different scales (levels) of representation of the change signal. Each scale is characterized by a different tradeoff between speckle reduction and preservation of geometrical details. For each pixel, a subset of reliable scales is identified on the basis of a local statistic measure applied to scale-dependent log-ratio images. The final changedetection result is obtained according to an adaptive scale-driven fusion algorithm. Experimental results obtained on multitemporal SAR images acquired by the ERS-1 satellite confirm the effectiveness of the proposed approach.
引用
收藏
页码:2963 / 2972
页数:10
相关论文
共 50 条
  • [1] DETAIL-PRESERVING CHANGE DETECTION FROM AMPLITUDE SAR IMAGES
    Garzelli, Andrea
    Zoppetti, Claudia
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3002 - 3005
  • [2] Unsupervised Change Detection from Multitemporal SAR Images based on a Detail Preserving approach and a Robust Threshold Estimation
    Chabira, Boulerbah
    Skanderi, Takieddine
    Aissa, Aichouche Belhadj
    [J]. 2017 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING - BOUMERDES (ICEE-B), 2017,
  • [3] Sparsity-Driven Change Detection in Multitemporal SAR Images
    Nar, Fatih
    Ozgur, Atilla
    Saran, Ayse Nurdan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (07) : 1032 - 1036
  • [4] DETAIL-PRESERVING FILTER FOR NOISY IMAGES
    RAMPONI, G
    [J]. ELECTRONICS LETTERS, 1995, 31 (11) : 865 - 866
  • [5] Detail-preserving segmentation of polarimetric SAR imagery
    Andreadis, A
    Benelli, G
    Garzelli, A
    [J]. IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 377 - 379
  • [6] Detail-preserving approach for impulse noise removal from images
    Xiao, XK
    Li, SF
    [J]. FOURTH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY, PROCEEDINGS, 2004, : 28 - 32
  • [7] An efficient detail-preserving approach for removing impulse noise in images
    Luo, WB
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (07) : 413 - 416
  • [8] A Markovian Approach for Urban Change Detection in Multitemporal Complex SAR Images
    Baselice, Fabio
    Ferraioli, Giampaolo
    Pascazio, Vito
    [J]. 2013 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2013, : 143 - 146
  • [9] An adaptive multiscale approach to unsupervised change detection in multitemporal SAR images
    Bovolo, F
    Bruzzone, L
    [J]. 2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 1069 - 1072
  • [10] A Scale-Driven Change Detection Method Incorporating Uncertainty Analysis for Remote Sensing Images
    Hao, Ming
    Shi, Wenzhong
    Zhang, Hua
    Wang, Qunming
    Deng, Kazhong
    [J]. REMOTE SENSING, 2016, 8 (09):