Quantum interference device for controlled two-qubit operations

被引:12
|
作者
Loft, Niels Jakob Soe [1 ]
Kjaergaard, Morten [2 ]
Kristensen, Lasse Bjorn [1 ]
Andersen, Christian Kraglund [3 ]
Larsen, Thorvald W. [4 ,5 ]
Gustavsson, Simon [2 ]
Oliver, William D. [2 ,6 ,7 ,8 ]
Zinner, Nikolaj T. [1 ,9 ]
机构
[1] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland
[4] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, DK-2100 Copenhagen, Denmark
[5] Univ Copenhagen, Niels Bohr Inst, Microsoft Quantum Lab Copenhagen, DK-2100 Copenhagen, Denmark
[6] MIT, Lincoln Lab, 244 Wood St, Lexington, MA 02420 USA
[7] MIT, Dept Phys, Cambridge, MA 02139 USA
[8] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[9] Aarhus Univ, Aarhus Inst Adv Study, DK-8000 Aarhus C, Denmark
关键词
UNIVERSAL;
D O I
10.1038/s41534-020-0275-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Universal quantum computing relies on high-fidelity entangling operations. Here, we demonstrate that four coupled qubits can operate as a quantum gate, where two qubits control the operation on two target qubits (a four-qubit gate). This configuration can implement four different controlled two-qubit gates: two different entangling swap and phase operations, a phase operation distinguishing states of different parity, and the identity operation (idle quantum gate), where the choice of gate is set by the state of the control qubits. The device exploits quantum interference to control the operation on the target qubits by coupling them to each other via the control qubits. By connecting several four-qubit devices in a two-dimensional lattice, one can achieve a highly connected quantum computer. We consider an implementation of the four-qubit gate with superconducting qubits, using capacitively coupled qubits arranged in a diamond-shaped architecture.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Quantum interference device for controlled two-qubit operations
    Niels Jakob Søe Loft
    Morten Kjaergaard
    Lasse Bjørn Kristensen
    Christian Kraglund Andersen
    Thorvald W. Larsen
    Simon Gustavsson
    William D. Oliver
    Nikolaj T. Zinner
    [J]. npj Quantum Information, 6
  • [2] Minimum construction of two-qubit quantum operations
    Zhang, J
    Vala, J
    Sastry, S
    Whaley, KB
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (02) : 020502 - 1
  • [3] Network implementation of covariant two-qubit quantum operations
    Novotny, J.
    Alber, G.
    Jex, I.
    [J]. PHYSICAL REVIEW A, 2007, 75 (04):
  • [4] Controlled Bidirectional Two-qubit Quantum Teleportation
    Wang Si-meng
    Zhang Wei
    Liao Cong
    [J]. ACTA PHOTONICA SINICA, 2018, 47 (09)
  • [5] Two-qubit logical operations in three quantum dots system
    Luczak, Jakub
    Bulka, Bogdan R.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (22)
  • [6] Phase-controlled two-qubit quantum gates
    Malinovsky, Vladimir S.
    Sola, Ignacio R.
    Vala, Jiri
    [J]. PHYSICAL REVIEW A, 2014, 89 (03):
  • [7] Controlled quantum teleportation of a two-qubit arbitrary state
    Xiu, Xiao-Ming
    Dong, Li
    Gao, Ya-Jun
    Chi, Feng
    [J]. ACTA PHYSICA POLONICA B, 2008, 39 (08): : 1811 - 1816
  • [8] Gatemon Benchmarking and Two-Qubit Operations
    Casparis, L.
    Larsen, T. W.
    Olsen, M. S.
    Kuemmeth, F.
    Krogstrup, P.
    Nygard, J.
    Petersson, K. D.
    Marcus, C. M.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (15)
  • [9] Entanglement capability of two-qubit operations
    Kraus, B
    Dür, W
    Vidal, G
    Cirac, JI
    Lewenstein, M
    Linden, N
    Popescu, S
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2001, 56 (1-2): : 91 - 99
  • [10] Completely positive covariant two-qubit quantum processes and optimal quantum NOT operations for entangled qubit pairs
    Novotny, J.
    Alber, G.
    Jex, I.
    [J]. PHYSICAL REVIEW A, 2006, 73 (06)