In situ X-ray nanotomography of metal surfaces during electropolishing

被引:6
|
作者
Nave, Maryana I. [1 ]
Allen, Jason P. [2 ]
Chen-Wiegart, Yu-chen Karen [3 ]
Wang, Jun [3 ]
Kalidindi, Surya R. [4 ]
Kornev, Konstantin G. [1 ]
机构
[1] Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA
[4] Georgia Inst Technol, Dept Mech Engn, Atlanta, GA 30332 USA
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
美国国家科学基金会;
关键词
TUNGSTEN TIPS; MICROSCOPY; ELECTROLYTE; FABRICATION; CAPILLARY; OXIDATION; GROWTH; FILMS; WO2;
D O I
10.1038/srep15257
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A low voltage electropolishing of metal wires is attractive for nanotechnology because it provides centimeter long and micrometer thick probes with the tip radius of tens of nanometers. Using X-ray nanotomography we studied morphological transformations of the surface of tungsten wires in a specially designed electrochemical cell where the wire is vertically submersed into the KOH electrolyte. It is shown that stability and uniformity of the probe span is supported by a porous shell growing at the surface of tungsten oxide and shielding the wire surface from flowing electrolyte. It is discovered that the kinetics of shell growth at the triple line, where meniscus meets the wire, is very different from that of the bulk of electrolyte. Many metals follow similar electrochemical transformations hence the discovered morphological transformations of metal surfaces are expected to play significant role in many natural and technological applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] In situ X-ray nanotomography of metal surfaces during electropolishing
    Maryana I. Nave
    Jason P. Allen
    Yu-chen Karen Chen-Wiegart
    Jun Wang
    Surya R. Kalidindi
    Konstantin G. Kornev
    Scientific Reports, 5
  • [2] Precipitation and surface adsorption of metal complexes during electropolishing. Theory and characterization with X-ray nanotomography and surface tension isotherms
    Nave, Maryana I.
    Chen-Wiegart, Yu-chen Karen
    Wang, Jun
    Kornev, Konstantin G.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (35) : 23121 - 23131
  • [3] X-ray nanotomography
    Withers, Philip J.
    MATERIALS TODAY, 2007, 10 (12) : 26 - 34
  • [4] X-ray nanotomography
    Sasov, A
    DEVELOPMENTS IN X-RAY TOMOGRAPHY IV, 2004, 5535 : 201 - 211
  • [5] X-ray Nanotomography Microscope
    不详
    PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2011, 48 (04): : 222 - 223
  • [6] X-ray nanotomography in a SEM
    Pauwels, Bart
    Liu, Xuan
    Sasov, Alexander
    DEVELOPMENTS IN X-RAY TOMOGRAPHY VII, 2010, 7804
  • [7] Multimodal x-ray nanotomography
    Doğa Gürsoy
    Chris Jacobsen
    MRS Bulletin, 2020, 45 : 272 - 276
  • [8] Multimodal x-ray nanotomography
    Gursoy, Doga
    Jacobsen, Chris
    MRS BULLETIN, 2020, 45 (04) : 272 - 276
  • [9] Quantitative x-ray phase nanotomography
    Diaz, Ana
    Trtik, Pavel
    Guizar-Sicairos, Manuel
    Menzel, Andreas
    Thibault, Pierre
    Bunk, Oliver
    PHYSICAL REVIEW B, 2012, 85 (02):
  • [10] Environmental control for X-ray nanotomography
    Holler, Mirko
    Aidukas, Tomas
    Heller, Lars
    Appel, Christian
    Phillips, Nicholas W.
    Mueller-Gubler, Elisabeth
    Guizar-Sicairos, Manuel
    Raabe, Joerg
    Ihli, Johannes
    JOURNAL OF SYNCHROTRON RADIATION, 2022, 29 (Pt 5) : 1223 - 1231