Permutations of Zd with restricted movement

被引:2
|
作者
Schmidt, Klaus [1 ]
Strasser, Gabriel [1 ]
机构
[1] Univ Vienna, Math Inst, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
关键词
infinite permutations of the integers; permutations with restricted movement; parity cocycle; ORBIT EQUIVALENCE; ALGEBRAIC ACTIONS; FINITE-TYPE; ENTROPY;
D O I
10.4064/sm8498-8-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate dynamical properties of the set of permutations of Z(d) with restricted movement, i.e., permutations pi of Z(d) such that pi (n) n lies, for every n is an element of Z(d), in a prescribed finite set A subset of Z(d). For d = 1, such permutations occur, for example, in restricted orbit equivalence (cf., e.g., Boyle and Tomiyama (1998), Kammeyer and Rudolph (1997), or Rudolph (1985)), or in the calculation of determinants of certain bi-infinite multi-diagonal matrices. For d >= 2 these sets of permutations provide natural classes of multidimensional shifts of finite type.
引用
收藏
页码:137 / 170
页数:34
相关论文
共 50 条
  • [1] PERMUTATIONS WITH RESTRICTED MOVEMENT
    Elimelech, Dor
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (09) : 4319 - 4349
  • [2] The Capacity of Multidimensional Permutations with Restricted Movement
    Elimelech, Dor
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 120 - 125
  • [3] Restricted permutations
    Atkinson, MD
    [J]. DISCRETE MATHEMATICS, 1999, 195 (1-3) : 27 - 38
  • [4] Simple permutations and pattern restricted permutations
    Albert, MH
    Atkinson, MD
    [J]. DISCRETE MATHEMATICS, 2005, 300 (1-3) : 1 - 15
  • [5] Restricted Dumont permutations
    Burstein, Alexander
    [J]. ANNALS OF COMBINATORICS, 2005, 9 (03) : 269 - 280
  • [6] Restricted Stirling Permutations
    Callan, David
    Ma, Shi-Mei
    Mansour, Toufik
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (05): : 957 - 978
  • [7] Restricted Symmetric Permutations
    Eric S. Egge
    [J]. Annals of Combinatorics, 2007, 11 : 405 - 434
  • [8] Restricted Simsun Permutations
    Emeric Deutsch
    Sergi Elizalde
    [J]. Annals of Combinatorics, 2012, 16 : 253 - 269
  • [9] PERMUTATIONS WITH RESTRICTED DISPLACEMENT
    BEKER, H
    MITCHELL, C
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1987, 8 (03): : 338 - 363
  • [10] Restricted symmetric permutations
    Egge, Eric S.
    [J]. ANNALS OF COMBINATORICS, 2007, 11 (3-4) : 405 - 434