On type-2 fuzzy sets and their t-norm operations

被引:63
|
作者
Hu, Bao Qing [1 ]
Kwong, C. K. [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Type-2 fuzzy set; Fuzzy true value; t-Norm; Type-2 fuzzy number; TRUTH VALUES; UNCERTAINTY MEASURES; TRIANGULAR NORMS; LOGIC SYSTEMS; FUZZISTICS; ALGORITHMS; OPERATORS; ALGEBRA;
D O I
10.1016/j.ins.2013.07.023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we discuss t-norm extension operations of general binary operation for fuzzy true values on a linearly ordered set, with a unit interval and a real number set as special cases. On the basis of it, t-norm operations of type-2 fuzzy sets and properties of type-2 fuzzy numbers are discussed. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:58 / 81
页数:24
相关论文
共 50 条
  • [1] Archimedean T-norm and T-Conorm for Interval Type-2 Fuzzy Sets
    Liu, Chao
    Tang, Guolin
    Guo, Sandang
    [J]. PROCEEDINGS OF 2019 3RD INTERNATIONAL CONFERENCE ON CLOUD AND BIG DATA COMPUTING (ICCBDC 2019), 2019, : 1 - 5
  • [2] Operations on type-2 fuzzy sets
    Karnik, NN
    Mendel, JM
    [J]. FUZZY SETS AND SYSTEMS, 2001, 122 (02) : 327 - 348
  • [3] A t-norm embedding theorem for fuzzy sets
    Bielawski, J.
    Tabor, J.
    [J]. FUZZY SETS AND SYSTEMS, 2012, 209 : 33 - 53
  • [4] Uninorm operations on type-2 fuzzy sets
    Takacs, Marta
    [J]. INES 2008: 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS, PROCEEDINGS, 2008, : 277 - 280
  • [5] Operations on Triangle Type-2 Fuzzy Sets
    Ling, Xue
    Zhang, Yunjie
    [J]. CEIS 2011, 2011, 15
  • [6] Operations on Concavoconvex Type-2 Fuzzy Sets
    Tahayori, Hooman
    Antoni, Giovanni Degli
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2008, 10 (04) : 276 - 286
  • [7] t-Norm based cuts of intuitionistic fuzzy sets
    Janis, Vladimir
    [J]. INFORMATION SCIENCES, 2010, 180 (07) : 1134 - 1137
  • [8] On fuzzy order in fuzzy sets based on t-norm fuzzy arithmetic
    Urbanski, Michal K.
    Krawczyk, Dominika
    Wojcicka, Kinga M.
    Wojcicki, Pawel M.
    [J]. FUZZY SETS AND SYSTEMS, 2024, 487
  • [9] A classification of representable t-norm operators for picture fuzzy sets
    Bui Cong Cuong
    Kreinovitch, Vladik
    Roan Thi Ngan
    [J]. 2016 EIGHTH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE), 2016, : 19 - 24
  • [10] A t-norm based specificity for fuzzy sets on compact domains
    Garmendia, L.
    Yager, R. R.
    Trillas, E.
    Salvador, A.
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2006, 35 (06) : 687 - 698