Low-field nuclear magnetic resonance for petroleum distillate characterization

被引:21
|
作者
Barbosa, Lucio L. [1 ]
Kock, Flavio V. C. [1 ]
Almeida, Vinicius M. D. L. [1 ]
Menezes, Sonia M. C. [2 ]
Castro, Eustaquio V. R. [1 ]
机构
[1] Univ Fed Espirito Santo, Dept Chem, Vitoria, ES, Brazil
[2] Petrobras Cenpes QM, Ilha Fundao, BR-21941598 Rio De Janeiro, RJ, Brazil
关键词
Low-field NMR; Petroleum; Petroleum fractions; Distillates; POROUS-MEDIA; CRUDE-OIL; NMR; DIFFUSION; TRANSVERSE; GRADIENT;
D O I
10.1016/j.fuproc.2015.05.027
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Low field nuclear magnetic resonance (LF-NMR) has several applications in the oilfield industry such as in predicting the viscosity and evaluating porosity, permeability, fluid saturation of reservoir rocks, and the water content in fluids. However, the studies to determine the physical and chemical properties of petroleum distillates are uncommon. So, the aim of this study was to determine the physical and chemical properties of distillates using the transverse relaxation time (T-2) in the range from 73.43 to 1810.74 ms. LF-NMR was employed in this research, due to its rapid and non-destructive analytical method. From LF-NMR data, it was possible to estimate the molar mass, correlation index, characterization factor, API gravity, relative hydrogen index, and number of hydrogen in distillates obtained up to 350 degrees C. T-2 and the properties determined by standard methodologies (ASTM D-1218, D-445-06, D-664-06, D-2892, and D-4052) were strongly correlated. So, low field NMR constitutes an interesting alternative to ASTM methods. The results also show that changes in the chemical and physical properties depend on boiling point and molecular mobility. Besides, LF-NMR enabled the classification of the fractions into gasoline, kerosene, and light and heavy gas oil. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:202 / 209
页数:8
相关论文
共 50 条
  • [1] LOW-FIELD NUCLEAR MAGNETIC RESONANCE SPECTROMETER
    MITCHELL, RW
    EISNER, M
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1957, 28 (08): : 624 - 628
  • [2] Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)
    Yao, Yanbin
    Liu, Dameng
    Che, Yao
    Tang, Dazhen
    Tang, Shuheng
    Huang, Wenhui
    FUEL, 2010, 89 (07) : 1371 - 1380
  • [3] Application of low-field nuclear magnetic resonance to assess the onset of asphaltene precipitation in petroleum
    Morgan, Vinicius G.
    Bastos, Thabita M.
    Sad, Cristina M. S.
    Leite, Juliete S. D.
    Castro, Eustaquio R., V
    Barbosa, Lucio L.
    FUEL, 2020, 265
  • [4] Progress in miniaturization and low-field nuclear magnetic resonance
    Anders, Jens
    Dreyer, Frederik
    Krueger, Daniel
    Schwartz, Ilai
    Plenio, Martin B.
    Jelezko, Fedor
    JOURNAL OF MAGNETIC RESONANCE, 2021, 322
  • [5] The characterization of human compact bone structure changes by low-field nuclear magnetic resonance
    Ni, QW
    King, JD
    Wang, XD
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2004, 15 (01) : 58 - 66
  • [6] Characterization of water state and distribution in fibre materials by low-field nuclear magnetic resonance
    Ji, Peng
    Jin, Jin
    Chen, Xianglin
    Wang, Chaosheng
    Wang, Huaping
    RSC ADVANCES, 2016, 6 (14) : 11492 - 11500
  • [7] LOW-FIELD MAGNETIC RESONANCE
    GARSTENS, MA
    KAPLAN, JI
    PHYSICAL REVIEW, 1955, 99 (02): : 459 - 463
  • [8] On the feasibility of neurocurrent imaging by low-field nuclear magnetic resonance
    Burghoff, Martin
    Albrecht, Hans-Helge
    Hartwig, Stefan
    Hilschenz, Ingo
    Koerber, Rainer
    Hoefner, Nora
    Scheer, Hans-Juergen
    Voigt, Jens
    Trahms, Lutz
    Curio, Gabriel
    APPLIED PHYSICS LETTERS, 2010, 96 (23)
  • [9] Static weak magnetic field measurements based on low-field nuclear magnetic resonance
    Wang, Xiaofei
    Zhu, Maohua
    Xiao, Kangda
    Guo, Jun
    Wang, Li
    JOURNAL OF MAGNETIC RESONANCE, 2019, 307
  • [10] Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR)
    Zhang, Pengfei
    Lu, Shuangfang
    Li, Junqian
    Chen, Chen
    Xue, Haitao
    Zhang, Jie
    MARINE AND PETROLEUM GEOLOGY, 2018, 89 : 775 - 785