Global optimality conditions for mixed nonconvex quadratic programs

被引:14
|
作者
Wu, Z. Y. [1 ]
Bai, F. S. [2 ]
机构
[1] Univ Ballarat, Sch Informat Technol & Math Sci, Ballarat, Vic 3353, Australia
[2] Chongqing Normal Univ, Sch Math & Comp Sci, Chongqing, Peoples R China
基金
澳大利亚研究理事会;
关键词
mixed quadratic program; global optimality; sufficient conditions; necessary conditions;
D O I
10.1080/02331930701761243
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article, we present some global optimality conditions for mixed quadratic programming problems. Our approach is based on a L-subdifferential and an associated L-normal cone. Unlike most subdifferentials, the L-subdifferential is formed by functions that are not necessarily linear functions. We derive some sufficient and necessary global optimality conditions for mixed quadratic programs with box constraints and binary constraints.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 50 条
  • [1] Sufficient Conditions for Global Optimality of Bivalent Nonconvex Quadratic Programs with Inequality Constraints
    Z. Y. Wu
    V. Jeyakumar
    A. M. Rubinov
    [J]. Journal of Optimization Theory and Applications, 2007, 133 : 123 - 130
  • [2] Sufficient conditions for global optimality of bivalent nonconvex quadratic programs with inequality constraints
    Wu, Z. Y.
    Jeyakumar, V.
    Rubinov, A. M.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2007, 133 (01) : 123 - 130
  • [3] Global optimality conditions for nonconvex minimization problems with quadratic constraints
    Li, Guoquan
    Wu, Zhiyou
    Quan, Jing
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [4] Global optimality conditions for nonconvex minimization problems with quadratic constraints
    Guoquan Li
    Zhiyou Wu
    Jing Quan
    [J]. Journal of Inequalities and Applications, 2015
  • [5] Global optimality conditions for fixed charge quadratic programs
    G. Q. Li
    Q. Long
    L. Jiang
    [J]. Optimization Letters, 2018, 12 : 1455 - 1464
  • [6] Global optimality conditions for fixed charge quadratic programs
    Li, G. Q.
    Long, Q.
    Jiang, L.
    [J]. OPTIMIZATION LETTERS, 2018, 12 (06) : 1455 - 1464
  • [7] On Sufficient Global Optimality Conditions for Bivalent Quadratic Programs with Quadratic Constraints
    Gong, Yu-Jun
    Xia, Yong
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2015, 32 (04)
  • [8] Global Optimality Conditions in Nonconvex Optimization
    Alexander S. Strekalovsky
    [J]. Journal of Optimization Theory and Applications, 2017, 173 : 770 - 792
  • [9] Global Optimality Conditions for Nonconvex Optimization
    Alexander S. Strekalovsky
    [J]. Journal of Global Optimization, 1998, 12 : 415 - 434
  • [10] Global Optimality Conditions in Nonconvex Optimization
    Strekalovsky, Alexander S.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 173 (03) : 770 - 792