Real-time 3D imaging of Haines jumps in porous media flow

被引:476
|
作者
Berg, Steffen [1 ]
Ott, Holger [1 ]
Klapp, Stephan A. [1 ]
Schwing, Alex [1 ]
Neiteler, Rob [1 ]
Brussee, Niels [1 ]
Makurat, Axel [1 ]
Leu, Leon [1 ,2 ]
Enzmann, Frieder [2 ]
Schwarz, Jens-Oliver [2 ]
Kersten, Michael [2 ]
Irvine, Sarah [3 ,4 ]
Stampanoni, Marco [3 ,5 ,6 ]
机构
[1] Shell Global Solut Int BV, NL-2288 GS Rijswijk, Netherlands
[2] Johannes Gutenberg Univ Mainz, Geosci Inst, D-55099 Mainz, Germany
[3] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland
[4] Univ Lausanne, Fac Biol & Med, CH-1015 Lausanne, Switzerland
[5] Univ Zurich, Inst Biomed Engn, CH-8092 Zurich, Switzerland
[6] ETH, CH-8092 Zurich, Switzerland
关键词
hydrology; oil recovery; multiphase flow; FLUID DISPLACEMENT; SNAP-OFF; MODEL; MICROTOMOGRAPHY; IMBIBITION; PRESSURE; SYSTEMS;
D O I
10.1073/pnas.1221373110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Newly developed high-speed, synchrotron-based X-ray computed microtomography enabled us to directly image pore-scale displacement events in porous rock in real time. Common approaches to modeling macroscopic fluid behavior are phenomenological, have many shortcomings, and lack consistent links to elementary pore-scale displacement processes, such as Haines jumps and snap-off. Unlike the common singular pore jump paradigm based on observations of restricted artificial capillaries, we found that Haines jumps typically cascade through 10-20 geometrically defined pores per event, accounting for 64% of the energy dissipation. Real-time imaging provided a more detailed fundamental understanding of the elementary processes in porous media, such as hysteresis, snap-off, and nonwetting phase entrapment, and it opens the way for a rigorous process for upscaling based on thermodynamic models.
引用
收藏
页码:3755 / 3759
页数:5
相关论文
共 50 条
  • [1] Real-time 3D lensless imaging through scattering media
    Singh, Alok Kumar
    Naik, Dinesh N.
    Pedrini, Giancarlo
    Takeda, Mitsuo
    Osten, Wolfgang
    [J]. OPTICAL MEASUREMENT TECHNIQUES FOR STRUCTURES & SYSTEMS III, 2016, : 289 - 296
  • [2] Real-time 3D ultrasound imaging
    Ponomaryov, VI
    Sansores-Pech, R
    Gallegos-Funes, F
    [J]. Real-Time Imaging IX, 2005, 5671 : 19 - 29
  • [3] 3D MR imaging in real-time
    Guttman, MA
    McVeigh, ER
    [J]. MEDICAL IMAGING 2001: VISUALIZATION, DISPLAY, AND IMAGE-GUIDED PROCEDURES, 2001, 4319 : 394 - 400
  • [4] Real-time 3D ladar imaging
    Cho, Peter
    Anderson, Hyrum
    Hatch, Robert
    Ramaswami, Prern
    [J]. SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XV, 2006, 6235
  • [5] STEREOSCOPIC DISPLAY OF REAL-TIME 3D IMAGING
    FISHMAN, EK
    CABRAL, B
    KULICK, T
    HEATH, DG
    [J]. RADIOLOGY, 1995, 197 : 539 - 539
  • [6] 3D real-time imaging of the fetal heart
    Scharf, A
    Geka, F
    Steinborn, A
    Frey, H
    Schlemmer, A
    Sohn, C
    [J]. FETAL DIAGNOSIS AND THERAPY, 2000, 15 (05) : 267 - 274
  • [7] Real-time freehand 3D ultrasound imaging
    Chen, Zhenping
    Huang, Qinghua
    [J]. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (01): : 74 - 83
  • [8] Real-time techniques for 3D flow visualization
    Fuhrmann, A
    Gröller, E
    [J]. VISUALIZATION '98, PROCEEDINGS, 1998, : 305 - 312
  • [9] 3D contaminant flow imaging in transparent granular porous media
    Fernandez Serrano, R.
    Iskander, M.
    Tabe, K.
    [J]. GEOTECHNIQUE LETTERS, 2011, 1 : 71 - 78
  • [10] Real-time 3D
    Coco, D
    [J]. COMPUTER GRAPHICS WORLD, 1995, 18 (12) : 22 - +