Thin film metal sensors in fusion bonded glass chips for high-pressure microfluidics

被引:11
|
作者
Andersson, Martin [1 ]
Ek, Johan [1 ,2 ]
Hedman, Ludvig [1 ,2 ]
Johansson, Fredrik [1 ,2 ]
Sehlstedt, Viktor [1 ,2 ]
Stocklassa, Jesper [1 ,2 ]
Snogren, Par [1 ,2 ]
Pettersson, Victor [1 ,2 ]
Larsson, Jonas [1 ,2 ]
Vizuete, Olivier [1 ,2 ]
Hjort, Klas [1 ]
Klintberg, Lena [1 ]
机构
[1] Uppsala Univ, Dept Engn Sci, Box 534, S-75121 Uppsala, Sweden
[2] Uppsala Univ, Adv Level Undergrad Project Course Micro & Nanote, S-75105 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
supercritical carbon dioxide; high pressure microfluidics; integrated electrodes; temperature sensing; flow sensing; glass; INTEGRATED ELECTRODES; SUPERCRITICAL FLUIDS; FLOW SENSORS; FABRICATION; DEVICE;
D O I
10.1088/0960-1317/27/1/015018
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High-pressure microfluidics offers fast analyses of thermodynamic parameters for compressed process solvents. However, microfluidic platforms handling highly compressible supercritical CO2 are difficult to control, and on-chip sensing would offer added control of the devices. Therefore, there is a need to integrate sensors into highly pressure tolerant glass chips. In this paper, thin film Pt sensors were embedded in shallow etched trenches in a glass wafer that was bonded with another glass wafer having microfluidic channels. The devices having sensors integrated into the flow channels sustained pressures up to 220 bar, typical for the operation of supercritical CO2. No leakage from the devices could be found. Integrated temperature sensors were capable of measuring local decompression cooling effects and integrated calorimetric sensors measured flow velocities over the range 0.5-13.8 mm s(-1). By this, a better control of high-pressure microfluidic platforms has been achieved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Fracture strength of glass chips for high-pressure microfluidics
    Andersson, Martin
    Hjort, Klas
    Klintberg, Lena
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2016, 26 (09)
  • [2] High-pressure microfluidics
    Hjort, K.
    MICROFLUIDICS, BIOMEMS, AND MEDICAL MICROSYSTEMS XIII, 2015, 9320
  • [3] Fabrication, mechanical testing and application of high-pressure glass microreactor chips
    Tiggelaar, Roald M.
    Benito-Lopez, Fernando
    Hermes, Dorothee C.
    Rathgen, Helmut
    Egberink, Richard J. M.
    Mugele, Frieder G.
    Reinhoudt, David N.
    van den Berg, Albert
    Verboom, Willem
    Gardeniers, Han J. G. E.
    CHEMICAL ENGINEERING JOURNAL, 2007, 131 (1-3) : 163 - 170
  • [4] Rapid prototyping for high-pressure microfluidics
    Carlie Rein
    Mehmet Toner
    Derin Sevenler
    Scientific Reports, 13
  • [5] A Latchable Valve for High-Pressure Microfluidics
    Ogden, Sam
    Boden, Roger
    Hjort, Klas
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2010, 19 (02) : 396 - 401
  • [6] A metallic micropump for high-pressure microfluidics
    Boden, Roger
    Hjort, Klas
    Schweitz, Jan-Ake
    Simu, Urban
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (11)
  • [7] Rapid prototyping for high-pressure microfluidics
    Rein, Carlie
    Toner, Mehmet
    Sevenler, Derin
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [8] Fabrication and mechanical testing of glass chips for high-pressure synthetic or analytical chemistry
    Oosterbroek, RE
    Hermes, DC
    Kakuta, M
    Benito-Lopez, F
    Gardeniers, JGE
    Verboom, W
    Reinhoudt, DN
    van den Berg, A
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2006, 12 (05): : 450 - 454
  • [9] Fabrication and mechanical testing of glass chips for high-pressure synthetic or analytical chemistry
    R. E. Oosterbroek
    D. C. Hermes
    M. Kakuta
    F. Benito-Lopez
    J. G. E. Gardeniers
    W. Verboom
    D. N. Reinhoudt
    A. van den. Berg
    Microsystem Technologies, 2006, 12 : 450 - 454
  • [10] Strain sensors and pressure sensors using CrN thin films for high-pressure hydrogen gas
    Niwa, Eiji
    Mikami, Hiroshi
    ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2018, 101 (09) : 55 - 62