MicroRNA-33 Deficiency Reduces the Progression of Atherosclerotic Plaque in ApoE-/- Mice

被引:183
|
作者
Horie, Takahiro [1 ,3 ]
Baba, Osamu [1 ]
Kuwabara, Yasuhide [1 ]
Chujo, Yoshimasa [1 ]
Watanabe, Shin [1 ]
Kinoshita, Minako [1 ]
Horiguchi, Masahito [1 ]
Nakamura, Tomoyuki [4 ]
Chonabayashi, Kazuhisa [2 ]
Hishizawa, Masakatsu [2 ]
Hasegawa, Koji [5 ]
Kume, Noriaki [1 ]
Yokode, Masayuki [3 ]
Kita, Toru [6 ]
Kimura, Takeshi [1 ]
Ono, Koh [1 ]
机构
[1] Kyoto Univ, Grad Sch Med, Dept Cardiovasc Med, Kyoto 6068507, Japan
[2] Kyoto Univ, Grad Sch Med, Dept Hematol & Oncol, Kyoto 6068507, Japan
[3] Kyoto Univ, Grad Sch Med, Translat Res Ctr, Dept Clin Innovat Med, Kyoto 6068507, Japan
[4] Kansai Med Univ, Dept Pharmacol, Moriguchi, Osaka 570, Japan
[5] Kyoto Med Ctr, Clin Res Inst, Div Translat Res, Kyoto, Japan
[6] Kobe City Med Ctr Gen Hosp, Dept Cardiovasc Med, Kobe, Hyogo, Japan
来源
基金
日本学术振兴会;
关键词
ABCA1; ABCG1; atherosclerosis; HDL-C; microRNA; HIGH-DENSITY-LIPOPROTEIN; 14; RANDOMIZED-TRIALS; RAISES PLASMA HDL; LDL CHOLESTEROL; ABCA1; APOPTOSIS; LESIONS; MACROPHAGES; INHIBITION; EFFICACY;
D O I
10.1161/JAHA.112.003376
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-Cholesterol efflux from cells to apolipoprotein A-I (apoA-I) acceptors via the ATP-binding cassette transporters ABCA1 and ABCG1 is thought to be central in the antiatherogenic mechanism. MicroRNA (miR)-33 is known to target ABCA1 and ABCG1 in vivo. Methods and Results-We assessed the impact of the genetic loss of miR-33 in a mouse model of atherosclerosis. MiR-33 and apoE double-knockout mice (miR-33(-/-)Apoe(-/-)) showed an increase in circulating HDL-C levels with enhanced cholesterol efflux capacity compared with miR-33(+/+)Apoe(-/-) mice. Peritoneal macrophages from miR-33(-/-)Apoe(-/-) mice showed enhanced cholesterol efflux to apoA-I and HDL-C compared with miR-33(+/+)Apoe(-/-) macrophages. Consistent with these results, miR-33(-/-) Apoe(-/-) mice showed reductions in plaque size and lipid content. To elucidate the roles of miR-33 in blood cells, bone marrow transplantation was performed in these mice. Mice transplanted with miR-33(-/-)Apoe(-/-) bone marrow showed a significant reduction in lipid content in atherosclerotic plaque compared with mice transplanted with miR-33(+/+)Apoe(-/-) bone marrow, without an elevation of HDL-C. Some of the validated targets of miR-33 such as RIP140 (NRIP1) and CROT were upregulated in miR-33(-/-)Apoe(-/-) mice compared with miR-33(+/+)Apoe(-/-) mice, whereas CPT1a and AMPK alpha were not. Conclusions-These data demonstrate that miR-33 deficiency serves to raise HDL-C, increase cholesterol efflux from macrophages via ABCA1 and ABCG1, and prevent the progression of atherosclerosis. Many genes are altered in miR-33-deficient mice, and detailed experiments are required to establish miR-33 targeting therapy in humans.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] MicroRNA-33 deficiency reduces atherosclerotic plaque progression in apoE knockout mice
    Baba, O.
    Horie, T.
    Nakamura, T.
    Hasegawa, K.
    Kume, N.
    Yokode, M.
    Kita, T.
    Kimura, T.
    Ono, K.
    EUROPEAN HEART JOURNAL, 2012, 33 : 199 - 199
  • [2] Microrna-33b Promotes Atherosclerotic Plaque Formation in Apoe-/- Mice
    Nishino, Tomohiro
    Horie, Takahiro
    Kuwabara, Yasuhide
    Nakao, Tetsushi
    Nishiga, Masataka
    Ide, Yuya
    Nakazeki, Fumiko
    Koyama, Satoshi
    Kimura, Masahiro
    Kimura, Takeshi
    Ono, Koh
    CIRCULATION, 2017, 136
  • [3] Mast cell chymase inhibition reduces atherosclerotic plaque progression and improves plaque stability in ApoE-/- mice
    Bot, Ilze
    Bot, Martine
    van Heiningen, Sandra H.
    van Santbrink, Peter J.
    Lankhuizen, Inge M.
    Hartman, Peter
    Gruener, Sabine
    Hilpert, Hans
    van Berkel, Theo J. C.
    Fingerle, Juergen
    Biessen, Erik A. L.
    CARDIOVASCULAR RESEARCH, 2011, 89 (01) : 244 - 252
  • [4] Rosuvastatin attenuates the progression of atherosclerotic plaque formation in ApoE-/- mice
    Du, Xiu-Wen
    Gao, Cai
    Han, You-Wei
    Liu, Xiao-Xia
    Wang, Lin
    Jiang, Hong-Ju
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2017, 10 (06): : 9056 - 9064
  • [5] MicroRNA 33 Deficiency in Leukocytes Reduced the Lipid Accumulation in Atherosclerotic Plaque in ApoE Knockout Mice
    Baba, Osamu
    Horie, Takahiro
    Kuwabara, Yasuhide
    Izuhara, Masayasu
    Usami, Shunsuke
    Nakao, Tetsushi
    Nishiga, Masataka
    Nishino, Tomohiro
    Sowa, Naoya
    Hasegawa, Koji
    Kume, Noriaki
    Yokode, Masayuki
    Kita, Toru
    Kimura, Takeshi
    Ono, Koh
    CIRCULATION, 2012, 126 (21)
  • [6] Systemic mast cell activation induces atherosclerotic plaque progression in ApoE-/- mice
    Bot, I.
    De Jager, S. C. A.
    Van Berkel, T. J. C.
    Biessen, E. A. L.
    ATHEROSCLEROSIS SUPPLEMENTS, 2006, 7 (03) : 247 - 247
  • [7] Thrombospondin-1 Deficiency Accelerates Atherosclerotic Plaque Maturation in ApoE-/- Mice
    Moura, Rute
    Tjwa, Marc
    Vandervoort, Petra
    Van Kerckhoven, Soetkin
    Holvoet, Paul
    Hoylaerts, Marc F.
    CIRCULATION RESEARCH, 2008, 103 (10) : 1181 - U259
  • [8] AnxA5 reduces plaque inflammation of advanced atherosclerotic lesions in apoE-/- mice
    Burgmaier, Mathias
    Schutters, Kristof
    Willems, Brecht
    Van der Vorst, Emiel P. C.
    Kusters, Dennis
    Chatrou, Martijn
    Norling, Lucy
    Biessen, Erik A. L.
    Cleutjens, Jack
    Perretti, Mauro
    Schurgers, Leon J.
    Reutelingsperger, Chris P. M.
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2014, 18 (10) : 2117 - 2124
  • [9] Tryptase Promotes Atherosclerotic Plaque Haemorrhage in ApoE-/- Mice
    Zhi, Xiuling
    Xu, Chen
    Zhang, Hao
    Tian, Dai
    Li, Xiaobo
    Ning, Yanxia
    Yin, Lianhua
    PLOS ONE, 2013, 8 (04):
  • [10] Noninvasive Assessment of Atherosclerotic Plaque Progression in ApoE-/- Mice Using Susceptibility Gradient Mapping
    Makowski, Marcus R.
    Varma, Gopal
    Wiethoff, Andrea J.
    Smith, Alberto
    Mattock, Katherine
    Jansen, Christian H. P.
    Warley, Alice
    Taupitz, Matthias
    Schaeffter, Tobias
    Botnar, Rene M.
    CIRCULATION-CARDIOVASCULAR IMAGING, 2011, 4 (03) : 295 - U153