Inhibition of Histone Demethylase JMJD1A Improves Anti-Angiogenic Therapy and Reduces Tumor-Associated Macrophages

被引:71
|
作者
Osawa, Tsuyoshi [1 ,2 ,5 ]
Tsuchida, Rika [5 ]
Muramatsu, Masashi [5 ,6 ]
Shimamura, Teppei [4 ]
Wang, Feng [5 ]
Suehiro, Jun-ichi [1 ]
Kanki, Yasuharu [2 ]
Wada, Youichiro [2 ]
Yuasa, Yasuhito [5 ]
Aburatani, Hiroyuki [3 ]
Miyano, Satoru [4 ]
Minami, Takashi [1 ]
Kodama, Tatsuhiko [2 ]
Shibuya, Masabumi [5 ,7 ]
机构
[1] Univ Tokyo, Lab Vasc Biol, Tokyo, Japan
[2] Univ Tokyo, Lab Syst Biol & Med, Tokyo, Japan
[3] Univ Tokyo, RCAST, Div Genome Sci, Tokyo, Japan
[4] Univ Tokyo, Inst Med Sci, Genome Ctr, Lab DNA Informat Anal, Tokyo, Japan
[5] Tokyo Med & Dent Univ, Grad Sch Med & Dent, Dept Mol Oncol, Tokyo, Japan
[6] Roswell Pk Canc Inst, Canc Genet Ctr Genet & Pharmacol, Buffalo, NY 14263 USA
[7] Jobu Univ, Dept Res & Educ, Gunma 3728588, Japan
基金
日本学术振兴会;
关键词
GROWTH-FACTOR RECEPTOR-1; ANTIANGIOGENIC THERAPY; IN-VIVO; METASTASIS; CELL; STARVATION; MOBILIZATION; PROGRESSION; EXPRESSION; RESISTANCE;
D O I
10.1158/0008-5472.CAN-12-3231
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Antiangiogenic strategies can be effective for cancer therapy, but like all therapies resistance poses a major clinical challenge. Hypoxia and nutrient starvation select for aggressive qualities that may render tumors resistant to antiangiogenic attack. Here, we show that hypoxia and nutrient starvation cooperate to drive tumor aggressiveness through epigenetic regulation of the histone demethylase JMJD1A (JHDM2A; KDM3A). In cancer cells rendered resistant to long-term hypoxia and nutrient starvation, we documented a stimulation of AKT phosphorylation, cell morphologic changes, cell migration, invasion, and anchorage-independent growth in culture. These qualities associated in vivo with increased angiogenesis and infiltration of macrophages into tumor tissues. Through expression microarray analysis, we identified a cluster of functional drivers such as VEGFA, FGF18, and JMJD1A, the latter which was upregulated in vitro under conditions of hypoxia and nutrient starvation and in vivo before activation of the angiogenic switch or the prerefractory phase of antiangiogenic therapy. JMJD1A inhibition suppressed tumor growth by downregulating angiogenesis and macrophage infiltration, by suppressing expression of FGF2, HGF, and ANG2. Notably, JMJD1A inhibition enhanced the antitumor effects of the anti-VEGF compound bevacizumab and the VEGFR/KDR inhibitor sunitinib. Our results form the foundation of a strategy to attack hypoxia-and nutrient starvation-resistant cancer cells as an approach to leverage antiangiogenic treatments and limit resistance to them. Cancer Res; 73(10); 3019-28. (C) 2013 AACR.
引用
收藏
页码:3019 / 3028
页数:10
相关论文
共 50 条
  • [1] The contribution of tumor-associated macrophages in glioma neo-angiogenesis and implications for anti-angiogenic strategies
    Zhu, Changbin
    Kros, Johan M.
    Cheng, Caroline
    Mustafa, Dana
    [J]. NEURO-ONCOLOGY, 2017, 19 (11) : 1435 - 1446
  • [2] Inhibition of tumor-associated macrophages by trabectedin improves the antitumor adaptive immunity in response to anti-PD-1 therapy
    Belgiovine, Cristina
    Frapolli, Roberta
    Liguori, Manuela
    Digifico, Elisabeth
    Colombo, Federico Simone
    Meroni, Marina
    Allavena, Paola
    D'Incalci, Maurizio
    [J]. EUROPEAN JOURNAL OF IMMUNOLOGY, 2021, 51 (11) : 2677 - 2686
  • [3] A novel liposomal Clodronate depletes tumor-associated macrophages in primary and metastatic melanoma: Anti-angiogenic and anti-tumor effects
    Piaggio, F.
    Kondylis, V.
    Pastorino, F.
    Di Paolo, D.
    Perri, P.
    Cossu, I.
    Schorn, F.
    Marinaccio, C.
    Murgia, D.
    Daga, A.
    Raggi, F.
    Loi, M.
    Emionite, L.
    Ognio, E.
    Pasparakis, M.
    Ribatti, D.
    Ponzoni, M.
    Brignole, C.
    [J]. JOURNAL OF CONTROLLED RELEASE, 2016, 223 : 165 - 177
  • [4] A novel liposomal Clodronate depletes tumor-associated macrophages in primary and metastatic melanoma: anti-angiogenic and anti-tumor effects
    Brignole, Chiara
    Perri, Patrizia
    Piaggio, Francesca
    Pastorino, Fabio
    Di Paolo, Daniela
    Emionite, Laura
    Daga, Antonio
    Kondylis, Vangelis
    Pasparakis, Manolis
    Ribatti, Domenico
    Ponzoni, Mirco
    [J]. CANCER RESEARCH, 2016, 76
  • [5] Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor
    Hawkins-Daarud, Andrea
    Rockne, Russell C.
    Anderson, Alexander R. A.
    Swanson, Kristin R.
    [J]. FRONTIERS IN ONCOLOGY, 2013, 3
  • [6] ANTI-ANGIOGENIC THERAPY INCREASES TUMOR ASSOCIATED MACROPHAGES (TAMS) IN RECURRENT GLIOBLASTOMA (GBM) PATIENTS
    Lu-Emerson, Christine
    Snuderl, Matija
    Davidson, Christian
    Kirkpatrick, Nathaniel D.
    Huang, Yuhui
    Duda, Dan G.
    Ancukiewicz, Marek
    Stemmer-Rachamimov, Anat
    Batchelor, Tracy T.
    Jain, Rakesh K.
    [J]. NEURO-ONCOLOGY, 2012, 14 : 110 - 110
  • [7] Regulation of the Histone Demethylase JMJD1A by Hypoxia-Inducible Factor 1α Enhances Hypoxic Gene Expression and Tumor Growth
    Krieg, Adam J.
    Rankin, Erinn B.
    Chan, Denise
    Razorenova, Olga
    Fernandez, Sully
    Giaccia, Amato J.
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2010, 30 (01) : 344 - 353
  • [8] Integrin α2β1 mediates the anti-angiogenic and anti-tumor activities of angiocidin, a novel tumor-associated protein
    Sabherwal, Yamini
    Rothman, Vicki L.
    Dimitrov, Suetoslau
    L'Heureux, Darryl Z.
    Marcinkiewicz, Cezary
    Sharma, Mahesh
    Tuszynski, George P.
    [J]. EXPERIMENTAL CELL RESEARCH, 2006, 312 (13) : 2443 - 2453
  • [9] VEGFR1: Target for Anti-Angiogenic Therapy? An Immunohistochemical Study Highlighting Heterogeneity of Tumor-Associated Endothelial Cells
    D'Haene, N.
    Hulet, F.
    Allard, J.
    Maris, C.
    Decaestecker, C.
    Salmon, I.
    [J]. MODERN PATHOLOGY, 2013, 26 : 441A - 441A
  • [10] VEGFR1: Target for Anti-Angiogenic Therapy? An Immunohistochemical Study Highlighting Heterogeneity of Tumor-Associated Endothelial Cells
    D'Haene, N.
    Hulet, F.
    Allard, J.
    Maris, C.
    Decaestecker, C.
    Salmon, I.
    [J]. LABORATORY INVESTIGATION, 2013, 93 : 441A - 441A