Faber-Krahn inequalities for the Robin Laplacian on bounded domain in Riemannian manifolds

被引:3
|
作者
Chen, Daguang [1 ]
Cheng, Qing-Ming [2 ]
Li, Haizhong [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Fukuoka Univ, Fac Sci, Dept Appl Math, Fukuoka 8140180, Japan
关键词
Faber-Krahn; Isoperimetric inequality; Robin Laplacian; Eigenvalue;
D O I
10.1016/j.jde.2022.07.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain the Faber-Krahn inequality for the first eigenvalue of the Robin Laplacian on bounded domain in Riemannian manifolds whose Ricci curvature satisfies Ric(g) >= (n - 1). The FaberKrahn inequality also holds for the Robin Laplacian on bounded domain in hyperbolic space H-n. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:374 / 386
页数:13
相关论文
共 50 条
  • [1] Faber-Krahn Inequalities for the Robin-Laplacian: A Free Discontinuity Approach
    Bucur, Dorin
    Giacomini, Alessandro
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (02) : 757 - 824
  • [2] The quantitative Faber-Krahn inequality for the Robin Laplacian
    Bucur, Dorin
    Ferone, Vincenzo
    Nitsch, Carlo
    Trombetti, Cristina
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (07) : 4488 - 4503
  • [3] On reverse Faber-Krahn inequalities
    Anoop, T. V.
    Kumar, K. Ashok
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (10)
  • [4] Faber-Krahn inequality for robin problems involving p-Laplacian
    Dai, Qiu-yi
    Fu, Yu-xia
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (01): : 13 - 28
  • [5] Faber-Krahn inequality for robin problems involving p-Laplacian
    Qiu-yi Dai
    Yu-xia Fu
    Acta Mathematicae Applicatae Sinica, English Series, 2011, 27 : 13 - 28
  • [6] A Faber-Krahn Inequality for Solutions of Schrodinger's Equation on Riemannian Manifolds
    Abreu, Emerson
    Barbosa, Ezequiel
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (02) : 1078 - 1090
  • [7] Faber-Krahn type inequalities for trees
    Biyikoglu, Tuerker
    Leydold, Josef
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (02) : 159 - 174
  • [8] Uniqueness in the Faber-Krahn inequality for Robin problems
    Daners, Daniel
    Kennedy, James
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (04) : 1191 - 1207
  • [9] A reverse Faber-Krahn inequality for the magnetic Laplacian ☆
    Colbois, Bruno
    Lena, Corentin
    Provenzano, Luigi
    Savo, Alessandro
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 192
  • [10] The Faber-Krahn type isoperimetric inequalities for a graph
    Katsuda, A
    Urakawa, H
    TOHOKU MATHEMATICAL JOURNAL, 1999, 51 (02) : 267 - 281