Statistical inference on regression with spatial dependence

被引:14
|
作者
Robinson, Peter M. [1 ]
Thawornkaiwong, Supachoke [1 ]
机构
[1] London Sch Econ, London, England
关键词
Linear regression; Partly linear regression; Nonparametric regression; Spatial data; Instrumental variables; Asymptotic normality; Variance estimation; TIME-SERIES REGRESSION; SEMIPARAMETRIC REGRESSION; ADAPTIVE ESTIMATION; RANDOM-FIELDS; MODELS;
D O I
10.1016/j.jeconom.2011.09.033
中图分类号
F [经济];
学科分类号
02 ;
摘要
Central limit theorems are developed for instrumental variables estimates of linear and semiparametric partly linear regression models for spatial data. General forms of spatial dependence and heterogeneity in explanatory variables and unobservable disturbances are permitted. We discuss estimation of the variance matrix, including estimates that are robust to disturbance heteroscedasticity and/or dependence. A Monte Carlo study of finite-sample performance is included. In an empirical example, the estimates and robust and non-robust standard errors are computed from Indian regional data, following tests for spatial correlation in disturbances, and nonparametric regression fitting. Some final comments discuss modifications and extensions. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:521 / 542
页数:22
相关论文
共 50 条
  • [1] Statistical inference for internal network reliability with spatial dependence
    Dinwoodie, IH
    Mosteig, E
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (04) : 663 - 674
  • [2] Spatially and Robustly Hybrid Mixture Regression Model for Inference of Spatial Dependence
    Chang, Wennan
    Dang, Pengdao
    Wan, Changlin
    Lu, Xiaoyu
    Fang, Yue
    Zhao, Tong
    Zang, Yong
    Li, Bo
    Zhang, Chi
    Cao, Sha
    [J]. 2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 31 - 40
  • [3] Statistical Inference for Spatial Regionalization
    Alrashid, Hussah
    Magdy, Amr
    Rey, Sergio
    [J]. 31ST ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2023, 2023, : 362 - 373
  • [4] The win odds: statistical inference and regression
    Song, James
    Verbeeck, Johan
    Huang, Bo
    Hoaglin, David C.
    Gamalo-Siebers, Margaret
    Seifu, Yodit
    Wang, Duolao
    Cooner, Freda
    Dong, Gaohong
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2023, 33 (02) : 140 - 150
  • [5] Statistical inference for nonparametric censored regression
    Mao, Guangcai
    Zhang, Jing
    [J]. STAT, 2021, 10 (01):
  • [6] STATISTICAL INFERENCE IN BERNOULLI TRIALS WITH DEPENDENCE
    KLOTZ, J
    [J]. ANNALS OF STATISTICS, 1973, 1 (02): : 373 - 379
  • [7] Statistical inference on uncertain nonparametric regression model
    Jianhua Ding
    Zhiqiang Zhang
    [J]. Fuzzy Optimization and Decision Making, 2021, 20 : 451 - 469
  • [8] Statistical Inference for a kind of Nonlinear Regression Model
    Jiang, Yuying
    Zhang, Yongming
    [J]. SUSTAINABLE DEVELOPMENT OF NATURAL RESOURCES, PTS 1-3, 2013, 616-618 : 2149 - 2152
  • [9] Statistical inference in nonlinear regression under heteroscedasticity
    Lim, Changwon
    Sen, Pranab K.
    Peddada, Shyamal D.
    [J]. SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2010, 72 (02): : 202 - 218
  • [10] Statistical inference on uncertain nonparametric regression model
    Ding, Jianhua
    Zhang, Zhiqiang
    [J]. FUZZY OPTIMIZATION AND DECISION MAKING, 2021, 20 (04) : 451 - 469