Macroeconomic forecasting for Pakistan in a data-rich environment
被引:3
|
作者:
Syed, Ateeb Akhter Shah
论文数: 0引用数: 0
h-index: 0
机构:
State Bank Pakistan, Res Dept, Karachi, Pakistan
Western Michigan Univ, Dept Econ, Kalamazoo, MI 49008 USAState Bank Pakistan, Res Dept, Karachi, Pakistan
Syed, Ateeb Akhter Shah
[1
,2
]
Lee, Kevin Haeseung
论文数: 0引用数: 0
h-index: 0
机构:
Western Michigan Univ, Dept Stat, Kalamazoo, MI 49008 USAState Bank Pakistan, Res Dept, Karachi, Pakistan
Lee, Kevin Haeseung
[3
]
机构:
[1] State Bank Pakistan, Res Dept, Karachi, Pakistan
[2] Western Michigan Univ, Dept Econ, Kalamazoo, MI 49008 USA
[3] Western Michigan Univ, Dept Stat, Kalamazoo, MI 49008 USA
Pakistan;
time series;
dynamic factor model;
penalized regression methods;
bagging;
LARGE NUMBER;
D O I:
10.1080/00036846.2020.1826399
中图分类号:
F [经济];
学科分类号:
02 ;
摘要:
This article forecasts the CPI inflation, GDP growth and the weighted average overnight repurchase rate in Pakistan using 161 predictors covering a period from July 2007 to July 2017. We use the naive mean model and the autoregressive model as benchmark models and compare their forecasting performance against the dynamic factor model (DFM) and sophisticated machine learning methods such as the Ridge regression, the LASSO, the Elastic net and a few variants of Bagging. The main purpose of the article is to determine, how well the commonly used DFM which has been used for time series forecasting for a long time, performs against the recently developed penalized regression methods in forecasting key macroeconomic variables in Pakistan. We forecast the variables of interest over 12 months forecast horizon. The forecast evaluation criteria used to compare the forecast performance of these models is the RMSE and MASE. For each variable of interest, we find that, for majority of the cases considered, one of the competing approaches outperform the benchmark models and other competing approaches at majority of forecast horizons. Our results show that, on the balance, the machine learning approaches perform better than the benchmark, the autoregressive and the DFM.
机构:
Pontifical Catholic Univ Rio de Janeiro, Dept Econ, Rio De Janeiro, BrazilPontifical Catholic Univ Rio de Janeiro, Dept Econ, Rio De Janeiro, Brazil
Medeiros, Marcelo C.
Vasconcelos, Gabriel F. R.
论文数: 0引用数: 0
h-index: 0
机构:
Pontifical Catholic Univ Rio de Janeiro, Dept Elect Engn, Rio De Janeiro, BrazilPontifical Catholic Univ Rio de Janeiro, Dept Econ, Rio De Janeiro, Brazil
机构:
CUNY Bernard M Baruch Coll, Zicklin Sch Business, Bert W Wasserman Dept Econ & Finance, New York, NY 10010 USACUNY Bernard M Baruch Coll, Zicklin Sch Business, Bert W Wasserman Dept Econ & Finance, New York, NY 10010 USA
机构:
EM Normandie Business Sch, Metis Lab, Paris, France
Vietnam Natl Univ, Int Sch, Hanoi, Vietnam
Swansea Univ, Sketty, WalesEM Normandie Business Sch, Metis Lab, Paris, France
Boubaker, Sabri
Liu, Zhenya
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Sch Finance, Beijing, Peoples R China
Renmin Univ China, China Financial Policy Res Ctr, Beijing, Peoples R China
Aix Marseille Univ, CERGAM, Aix En Provence, FranceEM Normandie Business Sch, Metis Lab, Paris, France
Liu, Zhenya
Zhang, Yifan
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Sch Finance, Beijing, Peoples R ChinaEM Normandie Business Sch, Metis Lab, Paris, France
机构:
Pontifical Catholic Univ Rio de Janeiro, Dept Econ, Rua Marques de Sao Vicente 225, BR-22451900 Rio De Janeiro, BrazilPontifical Catholic Univ Rio de Janeiro, Dept Econ, Rua Marques de Sao Vicente 225, BR-22451900 Rio De Janeiro, Brazil
Medeiros, Marcelo C.
Vasconcelos, Gabriel F. R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Econ, 3201 Social Sci Plaza B, Irvine, CA 92617 USAPontifical Catholic Univ Rio de Janeiro, Dept Econ, Rua Marques de Sao Vicente 225, BR-22451900 Rio De Janeiro, Brazil
Vasconcelos, Gabriel F. R.
Veiga, Alvaro
论文数: 0引用数: 0
h-index: 0
机构:
Pontifical Catholic Univ Rio de Janeiro, Dept Elect Engn, Rua Marques de Sao Vicente 225, BR-22451900 Rio De Janeiro, BrazilPontifical Catholic Univ Rio de Janeiro, Dept Econ, Rua Marques de Sao Vicente 225, BR-22451900 Rio De Janeiro, Brazil
Veiga, Alvaro
Zilberman, Eduardo
论文数: 0引用数: 0
h-index: 0
机构:
Pontifical Catholic Univ Rio de Janeiro PUC Rio, Cent Bank Chile, Agustinas 1180, Santiago 867, Chile
Pontifical Catholic Univ Rio de Janeiro PUC Rio, Dept Econ, Agustinas 1180, Santiago 867, ChilePontifical Catholic Univ Rio de Janeiro, Dept Econ, Rua Marques de Sao Vicente 225, BR-22451900 Rio De Janeiro, Brazil