PENALIZED ESTIMATION IN HIGH-DIMENSIONAL HIDDEN MARKOV MODELS WITH STATE-SPECIFIC GRAPHICAL MODELS

被引:16
|
作者
Stadler, Nicolas [1 ]
Mukherjee, Sach [1 ]
机构
[1] Netherlands Canc Inst, Dept Biochem, NL-1066 CX Amsterdam, Netherlands
来源
ANNALS OF APPLIED STATISTICS | 2013年 / 7卷 / 04期
关键词
HMM; Graphical Lasso; universal regularization; model selection; MMDL; greedy backward pruning; genome biology; chromatin modeling; VARIABLE SELECTION; MIXTURE;
D O I
10.1214/13-AOAS662
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider penalized estimation in hidden Markov models (HMMs) with multivariate Normal observations. In the moderate-to-large dimensional setting, estimation for HMMs remains challenging in practice, due to several concerns arising from the hidden nature of the states. We address these concerns by l(1)-penalization of state-specific inverse covariance matrices. Penalized estimation leads to sparse inverse covariance matrices which can be interpreted as state-specific conditional independence graphs. Penalization is nontrivial in this latent variable setting; we propose a penalty that automatically adapts to the number of states K and the state-specific sample sizes and can cope with scaling issues arising from the unknown states. The methodology is adaptive and very general, applying in particular to both low- and high-dimensional settings without requiring hand tuning. Furthermore, our approach facilitates exploration of the number of states K by coupling estimation for successive candidate values K. Empirical results on simulated examples demonstrate the effectiveness of the proposed approach. In a challenging real data example from genome biology, we demonstrate the ability of our approach to yield gains in predictive power and to deliver richer estimates than existing methods.
引用
收藏
页码:2157 / 2179
页数:23
相关论文
共 50 条
  • [1] Exploiting locality in high-dimensional Factorial hidden Markov models
    Rimella, Lorenzo
    Whiteley, Nick
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [2] Exploiting locality in high-dimensional Factorial hidden Markov models
    Rimella, Lorenzo
    Whiteley, Nick
    Journal of Machine Learning Research, 2022, 23
  • [3] Penalized maximum likelihood estimation for Gaussian hidden Markov models
    Alexandrovich, Grigory
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (20) : 6133 - 6148
  • [4] High-dimensional Covariance Estimation Based On Gaussian Graphical Models
    Zhou, Shuheng
    Ruetimann, Philipp
    Xu, Min
    Buehlmann, Peter
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 2975 - 3026
  • [5] PENALIZED ESTIMATION OF HIGH-DIMENSIONAL MODELS UNDER A GENERALIZED SPARSITY CONDITION
    Horowitz, Joel L.
    Huang, Jian
    STATISTICA SINICA, 2013, 23 (02) : 725 - 748
  • [6] High-Dimensional Mixed Graphical Models
    Cheng, Jie
    Li, Tianxi
    Levina, Elizaveta
    Zhu, Ji
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (02) : 367 - 378
  • [7] Variational Bayesian Variable Selection for High-Dimensional Hidden Markov Models
    Zhai, Yao
    Liu, Wei
    Jin, Yunzhi
    Zhang, Yanqing
    MATHEMATICS, 2024, 12 (07)
  • [8] High-dimensional joint estimation of multiple directed Gaussian graphical models
    Wang, Yuhao
    Segarra, Santiago
    Uhler, Caroline
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 2439 - 2483
  • [9] Joint estimation of multiple high-dimensional Gaussian copula graphical models
    He, Yong
    Zhang, Xinsheng
    Ji, Jiadong
    Liu, Bin
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2017, 59 (03) : 289 - 310
  • [10] Penalized estimation of flexible hidden Markov models for time series of counts
    Adam, Timo
    Langrock, Roland
    Weiss, Christian H.
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2019, 77 (02): : 87 - 104