Hydrolysis kinetics of 2-cyanopyridine, 3-cyanopyridine, and 4-cyanopyridine in high-temperature water

被引:2
|
作者
Fu, Jie [1 ]
Ren, Haoming [1 ]
Shi, Chaojun [1 ]
Lu, Xiuyang [1 ]
机构
[1] Zhejiang Univ, Dept Chem & Biol Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
NEAR-CRITICAL WATER; SUPERCRITICAL WATER; NITRILES; MECHANISM;
D O I
10.1002/kin.20707
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report herein the kinetic studies on hydrolysis of three cyanopyridines in high-temperature water. 3-Cyanopyridine, 4-cyanopyridine and 2-cyanopyridine underwent consecutive hydrolysis to the corresponding pyridinecarboxamides and picolinic acids. Further decarboxylation to pyridine was observed for 2-cyanopyridine hydrolysis. Experiments at different initial reactant concentrations revealed that these compounds exhibited the first-order kinetics. Experiments at different temperatures showed that the first-order rate constants displayed an Arrhenius behavior with activation energies of 74.3, 40.3, and 83.7 kJ mol-1 for 3-cyanopyridine, 4-cyanopyridine, 2-cyanopyridine, respectively. The activation energies obtained for 3-pyridinecarboxamide, 4-pyridinecarboxamide and 2-pyridinecarboxamide hydrolysis are 80.1, 32.7, and 70.5 kJ mol-1, respectively. The effect of substituent position on activation energies for cyanopyridine and pyridinecarboxamide hydrolysis is ortho approximate to meta > para. (c) 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 641648, 2012
引用
收藏
页码:641 / 648
页数:8
相关论文
共 50 条
  • [1] 2-CYANOPYRIDINE, 3-CYANOPYRIDINE AND 4-CYANOPYRIDINE COMPLEXES WITH SOME ZINC(II), CADMIUM(II) AND MERCURY(II) SALTS
    AHUJA, IS
    SINGH, R
    [J]. JOURNAL OF INORGANIC & NUCLEAR CHEMISTRY, 1974, 36 (07): : 1505 - 1513
  • [2] 3-CYANOPYRIDINE AND 4-CYANOPYRIDINE COMPLEXES OF PENTACYANOFERRATE(II) AND PENTACYANOCOBALTATE(III)
    MORENO, NGDV
    KATZ, NE
    OLABE, JA
    AYMONINO, PJ
    [J]. INORGANICA CHIMICA ACTA, 1979, 35 (02) : 183 - 188
  • [3] Adducts of nickel(II) acetylacetonate chelating with heterocyclic bases: 3-cyanopyridine and 4-cyanopyridine
    Zukerman-Schpector, J
    Trindade, AC
    Dunstan, PO
    [J]. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY, 2000, 56 (07): : 763 - 765
  • [4] Crystal structures of 2-and 3-cyanopyridine
    Kubiak, R
    Janczak, J
    Sledz, M
    [J]. JOURNAL OF MOLECULAR STRUCTURE, 2002, 610 (1-3) : 59 - 64
  • [5] INTRAMOLECULAR ELECTRON-TRANSFER FROM PENTACYANOFERRATE(II) TO PENTAAMMINECOBALT(III) - LINKAGE ISOMERS OF 3-CYANOPYRIDINE AND 4-CYANOPYRIDINE AS BRIDGING LIGANDS
    SZECSY, AP
    HAIM, A
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1982, 104 (11) : 3063 - 3069
  • [6] Hydrolysis of the 4-cyanopyridine on a Au(111) electrode studied by vibrational spectroscopies
    Pluchery, O
    Climent, V
    Rodes, A
    Tadjeddine, A
    [J]. ELECTROCHIMICA ACTA, 2001, 46 (28) : 4319 - 4329
  • [7] NITRILE HYDRATASE-CATALYZED PRODUCTION OF ISONICOTINAMIDE, PICOLINAMIDE AND PYRAZINAMIDE FROM 4-CYANOPYRIDINE, 2-CYANOPYRIDINE AND CYANOPYRAZINE IN RHODOCOCCUS-RHODOCHROUS J1
    MAUGER, J
    NAGASAWA, T
    YAMADA, H
    [J]. JOURNAL OF BIOTECHNOLOGY, 1988, 8 (01) : 87 - 95
  • [8] CONTINUOUS METHOD FOR HYDROLYSIS OF 3-CYANOPYRIDINE IN NICOTINAMIDE AND NICOTINIC-ACID .4.
    SUVOROV, BV
    KAGARLIT.AD
    SUSLOVA, NV
    EFREMOV, YG
    ERZHANOV, MK
    [J]. ZHURNAL PRIKLADNOI KHIMII, 1972, 45 (11) : 2588 - 2590
  • [9] Supercritical Water Oxidation of Pyridine and 3-Cyanopyridine: TOC Removal, Kinetics, and Degradation Pathway
    Yang, Bowen
    Shen, Zhemin
    [J]. JOURNAL OF ENVIRONMENTAL ENGINEERING, 2019, 145 (04)
  • [10] Thermodynamics of 2-and 3-cyanopyridine from vibrational spectra
    Isaq, M
    Arora, S
    Kajal, RS
    [J]. INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE-PART B, 2004, 78B (01): : 115 - 119