ELLIPTIC OPERATORS WITH UNBOUNDED DIFFUSION COEFFICIENTS PERTURBED BY INVERSE SQUARE POTENTIALS IN Lp-SPACES

被引:7
|
作者
Fornaro, Simona [1 ]
Gregorio, Federica [2 ]
Rhandi, Abdelaziz [3 ]
机构
[1] Univ Pavia, Dipartimento Matemat F Casorati, Via Ferrata,1, I-27100 Pavia, Italy
[2] Univ Salerno, Dipartimento Fis, Via Giovanni Paolo 2,132, I-84084 Fisciano, Sa, Italy
[3] Univ Salerno, Dipartimento Ingn Informaz Ingn Elettr & Matemat, Via Giovanni Paolo 2,132, I-84084 Fisciano, Sa, Italy
关键词
Inverse square potential; positivity preserving C-0-semigroup; core; dissipative and dispersive operator; Hardy's inequality; unbounded diffusion; ESSENTIAL SELF-ADJOINTNESS; GENERATION;
D O I
10.3934/cpaa.2016040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give sufficient conditions on a >= 0 and c is an element of R ensuring that the space of test functions C-c(infinity) (R-N) is a core for the operator L(0)u = (1 + vertical bar x vertical bar(alpha))Delta u + c/vertical bar x vertical bar(2) u =: Lu + c/vertical bar x vertical bar(2) u and L-0 with a suitable domain generates a quasi-contractive and positivity preserving C-0-semigroup in L-p(R-N), 1 < p < infinity. The proofs are based on some L-p-weighted Hardy's inequality and perturbation techniques.
引用
收藏
页码:2357 / 2372
页数:16
相关论文
共 50 条