A Neural-network Enhanced Video Coding Framework beyond VVC

被引:3
|
作者
Li, Junru [1 ]
Li, Yue [1 ]
Lin, Chaoyi [1 ]
Zhang, Kai [1 ]
Zhang, Li [1 ]
机构
[1] Bytedance Inc, Multimedia Lab, San Diego, CA 92122 USA
关键词
D O I
10.1109/CVPRW56347.2022.00191
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a hybrid video compression framework, aiming at providing a demonstration of applying deep learning-based approaches beyond conventional coding framework. The proposed hybrid framework is established over the Enhanced Compression Model (ECM) of which the core is the Versatile Video Coding (VVC) standard. We propose to integrate a series of enhanced coding tools, such as block partitioning, intra prediction, and inter prediction to further remove the spatial and temporal redundancy. Moreover, deep learning-based technologies including loop filter and super resolution are involved to restore the compression distortion. Compared with the VVC software VTM-11.0, experimental results demonstrate the effectiveness of the proposed learning-based framework, leading to 25.81%, 35.08%, and 37.54% bit-rate savings for Y, Cb and Cr components, respectively under random access configuration. In addition, the proposed framework achieves 39.313 and 32.050 PSNRs in the test set under 1 Mbps and 0.1 Mbps video compression tracks of CLIC-2022. 33.522, 30.758, and 28.300 in terms of PSNR are obtained in 0.3 bpp, 0.15 bpp, and 0.075 bpp image compression tracks.
引用
收藏
页码:1780 / 1784
页数:5
相关论文
共 50 条
  • [1] A Neural-network Enhanced Video Coding Framework beyond ECM
    Zhao, Yanchen
    He, Wenxuan
    Jia, Chuanmin
    Wang, Qizhe
    Li, Junru
    Li, Yue
    Lin, Chaoyi
    Zhang, Kai
    Zhang, Li
    Ma, Siwei
    [J]. 2024 DATA COMPRESSION CONFERENCE, DCC, 2024, : 605 - 605
  • [2] Enhanced Intra Prediction with Recurrent Neural Network in Video Coding
    Hu, Yueyu
    Yang, Wenhan
    Xia, Sifeng
    Cheng, Wen-Huang
    Liu, Jiaying
    [J]. 2018 DATA COMPRESSION CONFERENCE (DCC 2018), 2018, : 413 - 413
  • [3] Hybrid video coding scheme based on VVC and spatio-temporal attention convolution neural network
    He, Gang
    Xu, Kepeng
    Wu, Chang
    Ma, Zijia
    Wen, Xing
    Sun, Ming
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1790 - 1793
  • [4] Decoder-side Affine Model Refinement for Video Coding beyond VVC
    Chen, Jie
    Liao, Ru-Ling
    Ye, Yan
    Li, Xinwei
    [J]. 2023 DATA COMPRESSION CONFERENCE, DCC, 2023, : 248 - 257
  • [5] NEURAL-NETWORK ADAPTIVE IMAGE-CODING
    NIEMANN, H
    WU, JK
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1993, 4 (04): : 615 - 627
  • [6] Inter Cross-Component Prediction Merge Mode for Video Coding beyond VVC
    Deng, Zhipin
    Zhang, Kai
    Zhang, Li
    [J]. 2024 DATA COMPRESSION CONFERENCE, DCC, 2024, : 551 - 551
  • [7] Quantization and Entropy Coding in the Versatile Video Coding (VVC) Standard
    Schwarz, Heiko
    Coban, Muhammed
    Karczewicz, Marta
    Chuang, Tzu-Der
    Bossen, Frank
    Alshin, Alexander
    Lainema, Jani
    Helmrich, Christian R.
    Wiegand, Thomas
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (10) : 3891 - 3906
  • [8] Separable KLT for Intra Coding in Versatile Video Coding (VVC)
    Fan, Kui
    Wang, Ronggang
    Lin, Weisi
    Hou, Jong-Uk
    Duan, Lingyu
    Li, Ge
    Gao, Wen
    [J]. 2019 DATA COMPRESSION CONFERENCE (DCC), 2019, : 571 - 571
  • [9] CONVOLUTIONAL NEURAL NETWORK BASED IN-LOOP FILTER FOR VVC INTRA CODING
    Li, Yue
    Zhang, Li
    Zhang, Kai
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 2104 - 2108
  • [10] DISTRIBUTED CODING FOR DATA REPRESENTATION OF BACKPROPAGATION NEURAL-NETWORK CLASSIFIERS
    CHONG, CC
    JIA, JC
    [J]. ELECTRONICS LETTERS, 1995, 31 (21) : 1852 - 1854