Brain Tumor Synthetic Segmentation in 3D Multimodal MRI Scans

被引:13
|
作者
Hamghalam, Mohammad [1 ,2 ]
Lei, Baiying [1 ]
Wang, Tianfu [1 ]
机构
[1] Shenzhen Univ, Natl Reg Key Technol Engn Lab Med Ultrasound, Guangdong Key Lab Biomed Measurements & Ultrasoun, Sch Biomed Engn,Hlth Sci Ctr, Shenzhen 518060, Peoples R China
[2] Islamic Azad Univ, Fac Elect Biomed & Mechatron Engn, Qazvin Branch, Qazvin, Iran
基金
中国国家自然科学基金;
关键词
Tumor segmentation; Synthetic image; GAN; Regression model; Overall survival;
D O I
10.1007/978-3-030-46640-4_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The magnetic resonance (MR) analysis of brain tumors is widely used for diagnosis and examination of tumor subregions. The overlapping area among the intensity distribution of healthy, enhancing, non-enhancing, and edema regions makes the automatic segmentation a challenging task. Here, we show that a convolutional neural network trained on high-contrast images can transform the intensity distribution of brain lesions in its internal subregions. Specifically, a generative adversarial network (GAN) is extended to synthesize high-contrast images. A comparison of these synthetic images and real images of brain tumor tissue in MR scans showed significant segmentation improvement and decreased the number of real channels for segmentation. The synthetic images are used as a substitute for real channels and can bypass real modalities in the multimodal brain tumor segmentation framework. Segmentation results on BraTS 2019 dataset demonstrate that our proposed approach can efficiently segment the tumor areas. In the end, we predict patient survival time based on volumetric features of the tumor subregions as well as the age of each case through several regression models.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 50 条
  • [1] Combining CNNs with Transformer for Multimodal 3D MRI Brain Tumor Segmentation
    Dobko, Mariia
    Kolinko, Danylo-Ivan
    Viniavskyi, Ostap
    Yelisieiev, Yurii
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 232 - 241
  • [2] Multimodal weighted network for 3D brain tumor segmentation in MRI images
    Zhou, Zhiguo
    Wang, Rongfang
    Yang, Jing
    Xu, Rongbin
    Guo, Jinkun
    MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [3] 3D Brain Tumor Segmentation Through Multimodal Weighted Network in MRI
    Zhou, Z.
    Wang, R.
    Yang, J.
    Guo, J.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [4] Brain tumor segmentation on Multimodal MRI scans using EMAP Algorithm
    Anwar, Syed Muhammad
    Yousaf, Sobia
    Majid, Muhammad
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 550 - 553
  • [5] Brain Tumor Segmentation from 3D MRI Scans Using U-Net
    Montaha S.
    Azam S.
    Rakibul Haque Rafid A.K.M.
    Hasan M.Z.
    Karim A.
    SN Computer Science, 4 (4)
  • [6] Segmentation of MRI brain scans using spatial constraints and 3D features
    Grande-Barreto, Jonas
    Gomez-Gil, Pilar
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2020, 58 (12) : 3101 - 3112
  • [7] Segmentation of MRI brain scans using spatial constraints and 3D features
    Jonas Grande-Barreto
    Pilar Gómez-Gil
    Medical & Biological Engineering & Computing, 2020, 58 : 3101 - 3112
  • [8] Bag of Tricks for 3D MRI Brain Tumor Segmentation
    Zhao, Yuan-Xing
    Zhang, Yan-Ming
    Liu, Cheng-Lin
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 : 210 - 220
  • [9] Multimodal Brain Tumor Segmentation Using 3D Convolutional Networks
    Rodriguez Colmeiro, R. G.
    Verrastro, C. A.
    Grosges, T.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 226 - 240
  • [10] Multimodal MRI Brain Tumor Segmentation using 3D and 3D/2D Methods: A Study on the MICCAI BRATS Dataset
    Gtifa, Wafa
    Khoja, Intissar
    Sakly, Anis
    2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND EMERGENT TECHNOLOGIES, ICASET 2024, 2024,