Quantum Dot Gate Three-State and Nonvolatile Memory Field-Effect Transistors Using a ZnS/ZnMgS/ZnS Heteroepitaxial Stack as a Tunnel Insulator on Silicon-on-Insulator Substrates

被引:1
|
作者
Suarez, Ernesto [1 ]
Chan, Pik-Yiu [1 ]
Lingalugari, Murali [1 ]
Ayers, John E. [1 ]
Heller, Evan [2 ]
Jain, Faquir [1 ]
机构
[1] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
[2] RSoft Design Grp, Ossining, NY USA
关键词
II-VI tunnel insulator; ZnS-ZnMgS; II-VI floating gate; SOI substrate; three state; nonvolatile memory; FETS;
D O I
10.1007/s11664-013-2724-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes the use of II-VI lattice-matched gate insulators in quantum dot gate three-state and flash nonvolatile memory structures. Using silicon-on-insulator wafers we have fabricated GeO (x) -cladded Ge quantum dot (QD) floating gate nonvolatile memory field-effect transistor devices using ZnS-Zn0.95Mg0.05S-ZnS tunneling layers. The II-VI heteroepitaxial stack is nearly lattice-matched and is grown using metalorganic chemical vapor deposition on a silicon channel. This stack reduces the interface state density, improving threshold voltage variation, particularly in sub-22-nm devices. Simulations using self-consistent solutions of the Poisson and Schrodinger equations show the transfer of charge to the QD layers in three-state as well as nonvolatile memory cells.
引用
收藏
页码:3275 / 3282
页数:8
相关论文
共 50 条
  • [1] Quantum Dot Gate Three-State and Nonvolatile Memory Field-Effect Transistors Using a ZnS/ZnMgS/ZnS Heteroepitaxial Stack as a Tunnel Insulator on Silicon-on-Insulator Substrates
    Ernesto Suarez
    Pik-Yiu Chan
    Murali Lingalugari
    John E. Ayers
    Evan Heller
    Faquir Jain
    Journal of Electronic Materials, 2013, 42 : 3275 - 3282
  • [2] Three-state quantum dot gate field-effect transistor in silicon-on-insulator
    Karmakar, Supriya
    Gogna, Mukesh
    Suarez, Ernesto
    Jain, Faquir C.
    IET CIRCUITS DEVICES & SYSTEMS, 2015, 9 (02) : 111 - 118
  • [3] Three-State Quantum Dot Gate FETs Using ZnS-ZnMgS Lattice-Matched Gate Insulator on Silicon
    Supriya Karmakar
    Ernesto Suarez
    Faquir C. Jain
    Journal of Electronic Materials, 2011, 40 : 1749 - 1756
  • [4] Three-State Quantum Dot Gate FETs Using ZnS-ZnMgS Lattice-Matched Gate Insulator on Silicon
    Karmakar, Supriya
    Suarez, Ernesto
    Jain, Faquir C.
    JOURNAL OF ELECTRONIC MATERIALS, 2011, 40 (08) : 1749 - 1756
  • [5] ZnS-ZnMgS-ZnS Lattice-Matched Gate Insulator as an Alternative for Silicon Dioxide on Silicon in Quantum Dot Gate FETs (QDGFETs)
    Supriya Karmakar
    Ernesto Suarez
    Mukesh Gogna
    Faquir Jain
    Journal of Electronic Materials, 2012, 41 : 2663 - 2670
  • [6] ZnS-ZnMgS-ZnS Lattice-Matched Gate Insulator as an Alternative for Silicon Dioxide on Silicon in Quantum Dot Gate FETs (QDGFETs)
    Karmakar, Supriya
    Suarez, Ernesto
    Gogna, Mukesh
    Jain, Faquir
    JOURNAL OF ELECTRONIC MATERIALS, 2012, 41 (10) : 2663 - 2670
  • [7] Memory effect in ferroelectric-gate field effect transistors using 0.1μm-thick silicon-on-insulator substrates
    Aizawa, K
    Ishiwara, H
    FERROELECTRICS, 2002, 271 : 1763 - 1768
  • [8] Fabrication and Simulation of an Indium Gallium Arsenide Quantum-Dot-Gate Field-Effect Transistor (QDG-FET) with ZnMgS as a Tunnel Gate Insulator
    Chan, P. -Y.
    Gogna, M.
    Suarez, E.
    Al-Amoody, F.
    Karmakar, S.
    Miller, B. I.
    Heller, E. K.
    Ayers, J. E.
    Jain, F. C.
    JOURNAL OF ELECTRONIC MATERIALS, 2013, 42 (11) : 3259 - 3266
  • [9] Fabrication and Simulation of an Indium Gallium Arsenide Quantum-Dot-Gate Field-Effect Transistor (QDG-FET) with ZnMgS as a Tunnel Gate Insulator
    P.-Y. Chan
    M. Gogna
    E. Suarez
    F. Al-Amoody
    S. Karmakar
    B. I. Miller
    E. K. Heller
    J. E. Ayers
    F. C. Jain
    Journal of Electronic Materials, 2013, 42 : 3259 - 3266
  • [10] Analytical model of single-gate silicon-on-insulator (SOI) tunneling field-effect transistors (TFETs)
    Lee, Min Jin
    Choi, Woo Young
    SOLID-STATE ELECTRONICS, 2011, 63 (01) : 110 - 114