GPU-ACCELERATED IMAGE RETEXTURING IN GRADIENT DOMAIN

被引:0
|
作者
Li, Ping [1 ]
Sun, Hanqiu [1 ]
Shen, Jianbing [2 ]
机构
[1] CUHK, Dept Comp Sci & Engn, Hong Kong, Hong Kong, Peoples R China
[2] BIT, Sch Comp Sci & Technol, Beijing, Peoples R China
关键词
Image-based Rendering; Non-local Means Filtering; High Dynamic Range Image;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the novel GPU-accelated image retexturing approach for both high and low dynamic range images using our newly invented fast NLM filtering. Integrating the fast Maclaurin polynomial kernel filter and the latest GPU-CUDA acceleration, our approach is able to produce real-time high quality retexturing for objects of the interest, while preserving the original shading and similar texture distortion. We apply our revised NLM filtering to the initial depth map to ensure smoothed depth field for retexturing. Our approach using GPU-based fast NLM filtering is designed in parallel, and easy to develop on latest GPUs. Our testing results have shown the efficiency and satisfactory performance using our approach.
引用
收藏
页码:29 / 34
页数:6
相关论文
共 50 条
  • [1] A GPU-accelerated image reduction pipeline
    Niwano, Masafumi
    Murata, Katsuhiro L.
    Adachi, Ryo
    Wang, Sili
    Tachibana, Yutaro
    Yatsu, Yoichi
    Kawai, Nobuyuki
    Shimokawabe, Takashi
    Itoh, Ryosuke
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2021, 73 (01) : 14 - 24
  • [2] CLIJ: GPU-accelerated image processing for everyone
    Haase, Robert
    Royer, Loic A.
    Steinbach, Peter
    Schmidt, Deborah
    Dibrov, Alexandr
    Schmidt, Uwe
    Weigert, Martin
    Maghelli, Nicola
    Tomancak, Pavel
    Jug, Florian
    Myers, Eugene W.
    NATURE METHODS, 2020, 17 (01) : 5 - 6
  • [3] CLIJ: GPU-accelerated image processing for everyone
    Robert Haase
    Loic A. Royer
    Peter Steinbach
    Deborah Schmidt
    Alexandr Dibrov
    Uwe Schmidt
    Martin Weigert
    Nicola Maghelli
    Pavel Tomancak
    Florian Jug
    Eugene W. Myers
    Nature Methods, 2020, 17 : 5 - 6
  • [4] GPU-Accelerated Time-Domain Circuit Simulation
    Poore, R. E.
    PROCEEDINGS OF THE IEEE 2009 CUSTOM INTEGRATED CIRCUITS CONFERENCE, 2009, : 629 - 632
  • [5] GPU-accelerated image reconstruction for optical and infrared interferometry
    Baron, Fabien
    Kloppenborg, Brian
    OPTICAL AND INFRARED INTERFEROMETRY II, 2010, 7734
  • [6] GPU-Accelerated Microdosimetry
    Decunha, J.
    Mohan, R.
    MEDICAL PHYSICS, 2022, 49 (06) : E467 - E468
  • [7] GPU-Accelerated Nick Local Image Thresholding Algorithm
    Najafi, M. Hassan
    Murali, Anirudh
    Lilja, David J.
    Sartori, John
    2015 IEEE 21ST INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2015, : 576 - 584
  • [8] GPU-Accelerated Volumetric Medical Image Visualization Techniques
    Zhai, Weiming
    Yang, Fan
    Wang, Hong
    2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL IV, 2010, : 59 - 62
  • [9] GPU-accelerated CellProfiler
    Chakroun, Imen
    Michiels, Nick
    Wuyts, Roel
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 321 - 326
  • [10] A Comparative Study of Preconditioners for GPU-Accelerated Conjugate Gradient Solver
    Chen, Yao
    Zhao, Yonghua
    Zhao, Wei
    Zhao, Lian
    2013 IEEE 15TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS & 2013 IEEE INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (HPCC_EUC), 2013, : 628 - 635