Proteins with Altered Levels in Plasma from Glioblastoma Patients as Revealed by iTRAQ-Based Quantitative Proteomic Analysis

被引:67
|
作者
Gautam, Poonam [2 ]
Nair, Sudha C. [2 ]
Gupta, Manoj Kumar [2 ]
Sharma, Rakesh [1 ]
Polisetty, Ravindra Varma [2 ]
Uppin, Megha S. [3 ]
Sundaram, Challa [3 ]
Puligopu, Aneel K. [3 ]
Ankathi, Praveen [3 ]
Purohit, Aniruddh K. [3 ]
Chandak, Giriraj R. [2 ]
Harsha, H. C. [1 ]
Sirdeshmukh, Ravi [1 ,2 ]
机构
[1] Inst Bioinformat, Bangalore, Karnataka, India
[2] Ctr Cellular & Mol Biol CSIR, Hyderabad, Andhra Pradesh, India
[3] Nizams Inst Med Sci, Hyderabad, Andhra Pradesh, India
来源
PLOS ONE | 2012年 / 7卷 / 09期
关键词
CENTRAL-NERVOUS-SYSTEM; SERUM CARNOSINASE; CHROMOGRANIN-A; EXPRESSION; BRAIN; FERRITIN; MARKERS; CELLS; DIFFERENTIATION; INFLAMMATION;
D O I
10.1371/journal.pone.0046153
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glioblastomas (GBMs) are the most common and lethal primary tumors of the central nervous system with high level of recurrence despite aggressive therapy. Tumor-associated proteins/peptides may appear in the plasma of these patients as a result of disruption of the blood-brain barrier in them, raising the scope for development of plasma-based tests for diagnosis and monitoring the disease. With this objective, we analyzed the levels of proteins present in the plasma from GBM patients using an iTRAQ based LC-MS/MS approach. Analysis with pooled plasma specimens from the patient and healthy control samples revealed high confidence identification of 296 proteins, of which 61 exhibited a fold-change >= 1.5 in the patient group. Forty-eight of them contained signal sequence. A majority have been reported in the differentially expressed transcript or protein profile of GBM tissues; 6 have been previously studied as plasma biomarkers for GBM and 16 for other types of cancers. Altered levels of three representative proteins-ferritin light chain (FTL), S100A9, and carnosinase 1 (CNDP1)-were verified by ELISA in a test set of ten individual plasma specimens. FTL is an inflammation marker also implicated in cancer, S100A9 is an important member of the Ca2+ signaling cascade reported to be altered in GBM tissue, and CNDP1 has been reported for its role in the regulation of the levels of carnosine, implicated as a potential drug for GBM. These and other proteins in the dataset may form useful starting points for further clinical investigations for the development of plasma-based biomarker panels for GBM.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Identification of the Altered Proteins Related to Colon Carcinogenesis by iTRAQ-based Quantitative Proteomic Analysis
    Luo, Chunhua
    Yao, Defu
    Lim, Teck Kwang
    Lin, Qingsong
    Liu, Yingfu
    CURRENT PROTEOMICS, 2019, 16 (04) : 297 - 306
  • [2] An iTRAQ-Based Quantitative Proteomic Analysis of Plasma Proteins in Preterm Newborns With Retinopathy of Prematurity
    Zasada, Magdalena
    Suski, Maciej
    Bokiniec, Renata
    Szwarc-Duma, Monika
    Borszewska-Kornacka, Maria Katarzyna
    Madej, Jozef
    Bujak-Gizycka, Beata
    Madetko-Talowska, Anna
    Revhaug, Cecilie
    Baumbusch, Lars O.
    Saugstad, Ola D.
    Pietrzyk, Jacek Jozef
    Kwinta, Przemko
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (13) : 5312 - 5319
  • [3] iTRAQ-based quantitative proteomic analysis and bioinformatics study of proteins in retinoblastoma
    Cheng, Yong
    Meng, Qingyu
    Huang, Lvzhen
    Shi, Xuan
    Hou, Jing
    Li, Xiaoxin
    Liang, Jianhong
    ONCOLOGY LETTERS, 2017, 14 (06) : 8084 - 8091
  • [4] iTRAQ-based quantitative proteomic analysis and bioinformatics study of proteins in pterygia
    Linghu, Dandan
    Guo, Lili
    Zhao, Yinghua
    Liu, Zhiming
    Zhao, Mingwei
    Huang, Lvzhen
    Li, Xiaoxin
    PROTEOMICS CLINICAL APPLICATIONS, 2017, 11 (7-8)
  • [5] iTRAQ-based quantitative proteomic analysis of cervical cancer
    Ding, Yibing
    Yang, Min
    She, Sha
    Min, Haiyan
    Xv, Xiaoming
    Ran, Xiaoping
    Wu, Yongzheng
    Wang, We
    Wang, Lei
    Yi, Long
    Yang, Yixuan
    Gao, Qian
    INTERNATIONAL JOURNAL OF ONCOLOGY, 2015, 46 (04) : 1748 - 1758
  • [6] iTRAQ-Based Quantitative Proteomic Analysis of Nasopharyngeal Carcinoma
    Cai, Xin-Zhang
    Zeng, Wei-Qun
    Xiang, Yi
    Liu, Yi
    Zhang, Hong-Min
    Li, Hong
    She, Sha
    Yang, Min
    Xia, Kun
    Peng, Shi-Fang
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2015, 116 (07) : 1431 - 1441
  • [7] Quantitative iTRAQ-based proteomic analysis of differentially expressed proteins in aging in human and monkey
    Wang, Hao
    Zhu, Xiaoqi
    Shen, Junyan
    Zhao, En-Feng
    He, Dajun
    Shen, Haitao
    Liu, Hailiang
    Zhou, Yongxin
    BMC GENOMICS, 2019, 20 (01)
  • [8] Quantitative iTRAQ-based proteomic analysis of differentially expressed proteins in aging in human and monkey
    Hao Wang
    Xiaoqi Zhu
    Junyan Shen
    En-Feng Zhao
    Dajun He
    Haitao Shen
    Hailiang Liu
    Yongxin Zhou
    BMC Genomics, 20
  • [9] iTRAQ-based quantitative proteomic analysis of differentially expressed proteins in chemoresistant nasopharyngeal carcinoma
    Wang, Kun
    Chen, Zhen
    Long, Lu
    Tao, Ya
    Wu, Qiong
    Xiang, Manlin
    Liang, Yunlai
    Xie, Xulin
    Jiang, Yuan
    Xiao, Zhiqiang
    Yan, Yahui
    Qiu, Shiyang
    Yi, Bin
    CANCER BIOLOGY & THERAPY, 2018, 19 (09) : 809 - 824
  • [10] Elevated host lipid metabolism revealed by iTRAQ-based quantitative proteomic analysis of cerebrospinal fluid of tuberculous meningitis patients
    Mu, Jun
    Yang, Yongtao
    Chen, Jin
    Cheng, Ke
    Li, Qi
    Wei, Yongdong
    Zhu, Dan
    Shao, Weihua
    Zheng, Peng
    Xie, Peng
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2015, 466 (04) : 689 - 695