The Fractional Hilbert Transform of Generalized Functions

被引:0
|
作者
Abdullah, Naheed [1 ,2 ]
Iqbal, Saleem [2 ]
机构
[1] Govt Girls PostGrad Coll, Dept Math, Quetta 08734, Pakistan
[2] Univ Balochistan, Dept Math, Quetta 87550, Pakistan
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 10期
关键词
convolution; Boehmian; fractional Hilbert transform; Hilbert transform; equivalence class; delta sequences; compact support;
D O I
10.3390/sym14102096
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The fractional Hilbert transform, a generalization of the Hilbert transform, has been extensively studied in the literature because of its widespread application in optics, engineering, and signal processing. In the present work, we expand the fractional Hilbert transform that displays an odd symmetry to a space of generalized functions known as Boehmians. Moreover, we introduce a new fractional convolutional operator for the fractional Hilbert transform to prove a convolutional theorem similar to the classical Hilbert transform, and also to extend the fractional Hilbert transform to Boehmians. We also produce a suitable Boehmian space on which the fractional Hilbert transform exists. Further, we investigate the convergence of the fractional Hilbert transform for the class of Boehmians and discuss the continuity of the extended fractional Hilbert transform.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] OPERATION TRANSFORM FORMULAE FOR GENERALIZED FRACTIONAL HILBERT TRANSFORM
    Sheikh, Akilahmad
    Gudadhe, Alka
    [J]. JOURNAL OF SCIENCE AND ARTS, 2013, (04): : 339 - 344
  • [2] On the Hilbert transform in the framework of generalized functions
    Aragona, J.
    Fernandez, R.
    Panzarelli, H.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (08) : 567 - 579
  • [3] THE HILBERT TRANSFORM OF GENERALIZED-FUNCTIONS AND APPLICATIONS
    PANDEY, JN
    CHAUDHRY, MA
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1983, 35 (03): : 478 - 495
  • [4] Fractional Fourier transform of generalized functions
    Zayed, AI
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 7 (3-4) : 299 - 312
  • [5] Hilbert transform of generalized functions of Lp-growth
    Chung, JY
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2001, 12 (02) : 149 - 160
  • [6] Generalized kernels for reconstructing bandlimited functions and their Hilbert transform
    Boche, H
    Protzmann, M
    [J]. 1998 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS DIGEST, 1998, : 426 - 427
  • [7] Generalized Hankel Transform and Fractional Integrals on the Spaces of Generalized Functions
    Gehlot, Kuldeep Singh
    Vyas, Dinesh N.
    [J]. NEW TRENDS IN NANOTECHNOLOGY AND FRACTIONAL CALCULUS APPLICATIONS, 2010, : 203 - +
  • [8] Fractional Hilbert transform
    Lohmann, AW
    Mendlovic, D
    Zalevsky, Z
    [J]. OPTICS LETTERS, 1996, 21 (04) : 281 - 283
  • [9] Computing the Hilbert Transform of the Generalized Laguerre and Hermite Weight Functions
    Walter Gautschi
    Jörg Waldvogel
    [J]. BIT Numerical Mathematics, 2001, 41 : 490 - 503
  • [10] Computing the Hilbert transform of the generalized Laguerre and Hermite weight functions
    Gautschi, W
    Waldvogel, J
    [J]. BIT, 2001, 41 (03): : 490 - 503